The treatment of metastatic castration-resistant prostate cancer (mCRPC) has been fundamentally transformed by our greater understanding of its complex biological mechanisms and its entrance into the era of precision oncology. A broad aim is to use the extreme heterogeneity of mCRPC by matching already approved or new targeted therapies to the correct tumor genotype. To achieve this, tumor DNA must be obtained, sequenced, and correctly interpreted, with individual aberrations explored for their druggability, taking into account the hierarchy of driving molecular pathways. Although tumor tissue sequencing is the gold standard, tumor tissue can be challenging to obtain, and a biopsy from one metastatic site or primary tumor may not provide an accurate representation of the current genetic underpinning. Sequencing of circulating tumor DNA (ctDNA) might catalyze precision oncology in mCRPC, as it enables real-time observation of genomic changes in tumors and allows for monitoring of treatment response and identification of resistance mechanisms. Moreover, ctDNA can be used to identify mutations that may not be detected in solitary metastatic lesions and can provide a more in-depth understanding of inter- and intra-tumor heterogeneity. Finally, ctDNA abundance can serve as a prognostic biomarker in patients with mCRPC.The androgen receptor (AR)-axis is a well-established therapeutical target for prostate cancer, and through ctDNA sequencing, insights have been obtained in (temporal) resistance mechanisms that develop through castration resistance. New third-generation AR-axis inhibitors are being developed to overcome some of these resistance mechanisms. The druggability of defects in the DNA damage repair machinery has impacted the treatment landscape of mCRPC in recent years. For patients with deleterious gene aberrations in genes linked to homologous recombination, particularly or , PARP inhibitors have shown efficacy compared to the standard of care armamentarium, but platinum-based chemotherapy may be equally effective. A hierarchy exists in genes associated with homologous recombination, where, besides the canonical genes in this pathway, not every other gene aberration predicts the same likelihood of response. Moreover, evidence is emerging on cross-resistance between therapies such as PARP inhibitors, platinum-based chemotherapy and even radioligand therapy that target this genotype. Mismatch repair-deficient patients can experience a beneficial response to immune checkpoint inhibitors. Activation of other cellular signaling pathways such as PI3K, cell cycle, and MAPK have shown limited success with monotherapy, but there is potential in co-targeting these pathways with combination therapy, either already witnessed or anticipated. This review outlines precision medicine in mCRPC, zooming in on the role of ctDNA, to identify genomic biomarkers that may be used to tailor molecularly targeted therapies. The most common druggable pathways and outcomes of therapies matched to these pathways are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408363.2023.2266482 | DOI Listing |
J Comput Assist Tomogr
November 2024
From the Department of Radiology, Mayo Clinic, Rochester, MN.
Objectives: The aims of the study are to develop a prostate cancer risk prediction model that combines clinical and magnetic resonance imaging (MRI)-related findings and to assess the impact of adding Prostate Imaging-Reporting and Data System (PI-RADS) ≥3 lesions-level findings on its diagnostic performance.
Methods: This 3-center retrospective study included prostate MRI examinations performed with clinical suspicion of clinically significant prostate cancer (csPCa) between 2018 and 2022. Pathological diagnosis within 1 year after the MRI was used to diagnose csPCa.
J Natl Cancer Inst
January 2025
Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom.
Purpose: Overlapping genes are involved with rheumatoid arthritis (RA) and DNA repair pathways. Therefore, we hypothesised that patients with a high polygenic risk score (PRS) for RA will have an increased risk of radiotherapy (RT) toxicity given the involvement of DNA repair.
Methods: Primary analysis was performed on 1494 prostate cancer, 483 lung cancer and 1820 breast cancer patients assessed for development of RT toxicity in the REQUITE study.
Background: Male pattern baldness (MPB) is commonly associated with prostate diseases, both of which can significantly impact men's quality of life. However, the relationship and causality between them remain unclear. In this study, we investigated the causal relationship between the two.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
Androgen deprivation therapy (ADT) is the primary treatment strategy for prostate cancer. However, despite an initially favorable response, tumors inevitably progress to castration-resistant prostate cancer (CRPC). Therefore, the exploration of new therapeutic approaches targeting CRPC has become imperative.
View Article and Find Full Text PDFCancer
January 2025
Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Background: Testicular germ cell tumors (TGCTs) are the most common cancers among young men in the United States. Incidence rates among non-Hispanic White (NHW) men historically have been much higher than the rates among other men. To study whether this pattern had changed, the authors examined trends in TGCT incidence for the years 1992-2021.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!