Water-saving attempts for rice cultivation often reduce yields. Maintaining productivity under drought is possible when rice genotypes are bred with improved metabolism and spikelet fertility. Although attempts have been made to introgress water mining and water use efficiency traits, combining acquired tolerance traits (ATTs), that is, specific traits induced or upregulated to better tolerate severe stress, appears equally important. In our study, we screened 90 rice germplasm accessions that represented the molecular and phenotypic variations of 851 lines of the 3 K rice panel. Utilising phenomics, we identified markers linked to ATTs through association analysis of over 0.2 million SNPs derived from whole-genome sequences. Propensity to respond to 'induction' stress varied significantly among genotypes, reflecting differences in cellular protection against oxidative stress. Among the ATTs, the hydroxyl radical and proline contents exhibited the highest variability. Furthermore, these significant variations in ATTs were strongly correlated with spikelet fertility. The 43 significant markers associated with ATTs were further validated using a different subset of contrasting genotypes. Gene expression studies and metabolomic profiling of two well-known contrasting genotypes, APO (tolerant) and IR64 (sensitive), identified two ATT genes: AdoMetDC and Di19. Our study highlights the relevance of polyamine biosynthesis in modulating ATTs in rice. Genotypes with superior ATTs and the associated markers can be effectively employed in breeding rice varieties with sustained spikelet fertility and grain yield under drought.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.13992 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Dept. of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
Rice salt tolerance is highly anticipated to meet global demand in response to decreasing farmland and soil salinization. Therefore, dissecting the genetic loci controlling salt tolerance in rice for improving productivity is of utmost importance. Here, we evaluated six salt-tolerance-related traits of a biparental mapping population comprising 280 F2 rice individuals (Oryza sativa L.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China.
The increasing frequency of low-temperature events in spring, driven by climate change, poses a serious threat to wheat production in Northern China. Understanding how low-temperature stress affects wheat yield and its components under varying moisture conditions, and exploring the role of irrigation before exposure to low temperatures, is crucial for food security and mitigating agricultural losses. In this study, four wheat cultivars-semi-spring (YZ4110, LK198) and semi-winter (ZM366, FDC21)-were tested across two years under different conditions of soil moisture (irrigation before low-temperature exposure (IBLT) and non-irrigation (NI)) and low temperatures (-2 °C, -4 °C, -6 °C, -8 °C, and -10 °C).
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
Plant two-component system (TCS) is crucial for phytohormone signalling, stress response, and circadian rhythms, yet the precise role of most of the family members in rice remain poorly understood. In this study, we investigated the function of OsPHP1, a pseudo-histidine phosphotransfer protein in rice, using a functional genomics approach. OsPHP1 is localised in the nucleus and cytosol, and it exhibits strong interactions with all sensory histidine kinase proteins (OsHK1-6) and cytokinin catabolism genes.
View Article and Find Full Text PDFPlant Sci
December 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China. Electronic address:
While hybrids between japonica and indica rice exhibit strong heterosis, they often suffer from hybrid sterility (HS). Hybrid fertility of the embryo sac is predominantly regulated by a three-gene system (comprising closely linked ORF3, ORF4 and ORF5) at rice S5 locus. The cooperation of ORF5+ and ORF4+ can result in endoplasmic reticulum (ER) stress and sporophytically kill all embryo sacs, while ORF3+ can gametophytically protect the residing embryo sac.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
The photoperiod insensitive allele of Photoperiod-H1 (ppd-H1) increases spike fertility in barley, both indirectly by lengthening flowering time and directly when flowering time is accelerated under extra-long photoperiods. To determine if the effect of PPD-H1 on spike fertility is related to the initiation or the mortality of spikelets/florets, we performed detailed analysis of the dynamics of floret development along the barley spikes. Four near-isogenic lines (NILs) combining ppd-H1 and Ppd-H1 alleles with two PHYTOCHROME C (PhyC-l and PhyC-e) backgrounds were compared under 12- and 24-hour photoperiods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!