Allopolyploidy is a common speciation mechanism in plants; however, its physiological and ecological consequences in niche partitioning have been scarcely studied. In this sense, leaf traits are good proxies to study the adaptive capacity of allopolyploids and diploid parents to their respective environmental conditions. In the present work, leaf water relations (assessed through pressure-volume curves) and structural and anatomical traits of the allotetraploid fern Oeosporangium tinaei and its diploid parents, Oeosporangium hispanicum and Oeosporangium pteridioides, were studied under controlled conditions in response to a water stress (WS) cycle. O. hispanicum showed the lowest osmotic potential at turgor loss point (π ) and leaf capacitance, together with higher leaf mass per area (LMA), leaf thickness (LT), leaf density (LD), and leaf dry matter content (LDMC), whereas O. pteridioides presented the opposite set of traits (high π and capacitance, and low LMA, LT, LD, and LDMC). O. tinaei showed an intermediate position for most of the studied traits. The responsiveness (osmotic and elastic adjustments) to WS was low, although most of the traits explained the segregation of the three species across a range of drought tolerance according to the rank: O. hispanicum > O. tinaei > O. pteridioides. These trait differences may underlie the niche segregation among coexisting populations of the three species in the Mediterranean basin.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.14043DOI Listing

Publication Analysis

Top Keywords

diploid parents
12
leaf
8
water relations
8
three species
8
traits
5
leaf structure
4
structure water
4
relations allotetraploid
4
allotetraploid mediterranean
4
mediterranean fern
4

Similar Publications

Background And Aims: Ornamental hortensias are bred from a reservoir of over 200 species in the genus Hydrangea s.l. (Hydrangeaceae), and are valued in gardens, households and landscapes across the globe.

View Article and Find Full Text PDF

Creation and long-term in vitro maintenance of valuable genotype collection is one of the modern approach to conservation of valuable gene pool of woody plants. However, during prolonged cultivation, genetic variability of cells and tissues may accumulate and lead to the loss of valuable characteristics of parental plants. It is therefore important to assess the genetic (including cytogenetic) stability of collection clones.

View Article and Find Full Text PDF

Generation of live mice from haploid ESCs with germline-DMR deletions or switch.

Cell Discov

January 2025

Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.

Genomic imprinting is required for sexual reproduction and embryonic development of mammals, in which, differentially methylated regions (DMRs) regulate the parent-specific monoallelic expression of imprinted genes. Numerous studies on imprinted genes have highlighted their critical roles in development. However, what imprinting network is essential for development is still unclear.

View Article and Find Full Text PDF

The genetic, morphological and taxonomic diversity of the genus is due to homoploid and polyploid hybridisation, autopolyploidy and apomixis, which also influence the production and diversity of secondary metabolites, especially flavonoids. The aim of this study was to investigate the relationships and variations of flavonoids in terms of hybrid origin and ploidy level between the parental species and their hybrid derivatives. The sampling design included leaf material of the following accessions from ten natural localities: parental taxa (di-, tri- and tetraploids of ; diploid and ) and their di-, tri- and tetraploid hybrid derivatives from crosses of × (subg.

View Article and Find Full Text PDF

Growth Superiority and Genetic Characterization of the Hybrid from Female Ussuri Catfish () and Male Longsnout Catfish ().

Animals (Basel)

December 2024

State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.

Crossbreeding is a traditional breeding technique and has been performed successfully in many fish species. However, distant hybridization between different genera is hard to be successful because of reproductive isolation. In this study, diploid hybrids (PL) were successfully derived from the hybridization of Ussuri catfish (, PU, ♀, 2n = 52) and longsnout catfish (, LL, ♂, 2n = 52).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!