A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial Visual Systems Fabricated with Ferroelectric van der Waals Heterostructure for In-Memory Computing Applications. | LitMetric

Rapid developments in artificial neural network techniques and retina-inspired artificial visual systems are required to realize the sensing, processing, and memorization of an optical signal in a single device. Herein, a ferroelectric field-effect transistor fabricated with CuInPS and α-InSe van der Waals heterostructures is proposed and demonstrated for the development of an artificial visual system. The dipole polarizations are coupled and bidirectionally locked inside the ferroelectric α-InSe along the in-plane and out-of-plane directions and are controlled by the gate voltages. Furthermore, light-induced polarization can change the order of polarization of the dipoles inside α-InSe. We demonstrate that using the combined control of these electrical and optical signals, the device may function like a retina-inspired vision system. The device can operate across a wide wavelength range (405-850 nm) and detect very low incident light (0.03 mW/cm). Color recognition, high paired-pulse facilitation (∼170%), and short- to long-term memory transitions through quick learning are observed using this device. Additionally, this device demonstrates different complex processing abilities, including pattern recognition, light adaptation, optical logic operation, and event learning. The proposed ferroelectric heterostructure-based artificial visual system can serve as an essential bridge for fulfilling the future requirements of all-in-one sensing and memory-processing devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c05771DOI Listing

Publication Analysis

Top Keywords

artificial visual
16
visual systems
8
van der
8
der waals
8
visual system
8
artificial
5
device
5
systems fabricated
4
ferroelectric
4
fabricated ferroelectric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!