Clonal Proliferation Within Smooth Muscle Cells in Unstable Human Atherosclerotic Lesions.

Arterioscler Thromb Vasc Biol

Department of Pathology, CVPath Institute, Gaithersburg, MD (K.K., A.S., S.K.B.G., R.K., W.X., L.G., D.T.F., T.T., P.S., A.C., Y.S., M. Mori, T.K., A.E.V., R.D., R.V., A.V.F.).

Published: December 2023

Background: Studies in humans and mice using the expression of an X-linked gene or lineage tracing, respectively, have suggested that clones of smooth muscle cells (SMCs) exist in human atherosclerotic lesions but are limited by either spatial resolution or translatability of the model.

Methods: Phenotypic clonality can be detected by X-chromosome inactivation patterns. We investigated whether clones of SMCs exist in unstable human atheroma using RNA in situ hybridization (BaseScope) to identify a naturally occurring 24-nucleotide deletion in the 3'UTR of the X-linked (biglycan) gene, a proteoglycan highly expressed by SMCs. -specific BaseScope probes were designed to target the wild-type or deletion mRNA. Three different coronary artery plaque types (erosion, rupture, and adaptive intimal thickening) were selected from heterozygous females for the deletion . Hybridization of target RNA-specific probes was used to visualize the spatial distribution of mutants. A clonality index was calculated from the percentage of each probe in each region of interest. Spatial transcriptomics were used to identify differentially expressed transcripts within clonal and nonclonal regions.

Results: Less than one-half of regions of interest in the intimal plaque were considered clonal with the mean percent regions of interest with clonality higher in the intimal plaque than in the media. This was consistent for all plaque types. The relationship of the dominant clone in the intimal plaque and media showed significant concordance. In comparison with the nonclonal lesions, the regions with SMC clonality had lower expression of genes encoding cell growth suppressors such as , (small EDRK-rich factor 2), (cathepsin B), and (major histocompatibility complex, class II, DP alpha 1), among others.

Conclusions: Our novel approach to examine clonality suggests atherosclerosis is primarily a disease of polyclonally and to a lesser extent clonally expanded SMCs and may have implications for the development of antiatherosclerotic therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.123.319479DOI Listing

Publication Analysis

Top Keywords

intimal plaque
12
smooth muscle
8
muscle cells
8
unstable human
8
human atherosclerotic
8
atherosclerotic lesions
8
smcs exist
8
plaque types
8
regions interest
8
plaque media
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!