During cerebral hypoperfusion induced by lower body negative pressure (LBNP), cerebral tissue oxygenation is protected with oscillatory arterial pressure and cerebral blood flow at low frequencies (0.1 Hz and 0.05 Hz), despite no protection of cerebral blood flow or oxygen delivery. However, hypocapnia induced by LBNP contributes to cerebral blood flow reductions, and may mask potential protective effects of hemodynamic oscillations on cerebral blood flow. We hypothesized that under isocapnic conditions, forced oscillations of arterial pressure and blood flow at 0.1 Hz and 0.05 Hz would attenuate reductions in extra- and intracranial blood flow during simulated hemorrhage using LBNP. Eleven human participants underwent three LBNP profiles: a nonoscillatory condition (0 Hz) and two oscillatory conditions (0.1 Hz and 0.05 Hz). End-tidal (et) CO and etO were clamped at baseline values using dynamic end-tidal forcing. Cerebral tissue oxygenation (ScO), internal carotid artery (ICA) blood flow, and middle cerebral artery velocity (MCAv) were measured. With clamped etCO, neither ICA blood flow (ANOVA = 0.93) nor MCAv (ANOVA = 0.36) decreased with LBNP, and these responses did not differ between the three profiles (ICA blood flow: 0 Hz: 2.2 ± 5.4%, 0.1 Hz: -0.4 ± 6.6%, 0.05 Hz: 0.2 ± 4.8%; = 0.56; MCAv: 0 Hz: -2.3 ± 7.8%, 0.1 Hz: -1.3 ± 6.1%, 0.05 Hz: -3.1 ± 5.0%; = 0.87). Similarly, ScO did not decrease with LBNP (ANOVA = 0.21) nor differ between the three profiles (0 Hz: -2.6 ± 3.3%, 0.1 Hz: -1.6 ± 1.5%, 0.05 Hz: -0.2 ± 2.8%; = 0.13). Contrary to our hypothesis, cerebral blood flow and tissue oxygenation were protected during LBNP with isocapnia, regardless of whether hemodynamic oscillations were induced. We examined the role of forcing oscillations in arterial pressure and blood flow at 0.1 Hz and 0.05 Hz on extra- and intracranial blood flow and cerebral tissue oxygenation during simulated hemorrhage (using lower body negative pressure, LBNP) under isocapnic conditions. Contrary to our hypothesis, both cerebral blood flow and cerebral tissue oxygenation were completely protected during simulated hemorrhage with isocapnia, regardless of whether oscillations in arterial pressure and cerebral blood flow were induced. These findings highlight the protective effect of preventing hypocapnia on cerebral blood flow under simulated hemorrhage conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911761 | PMC |
http://dx.doi.org/10.1152/japplphysiol.00241.2023 | DOI Listing |
Transl Vis Sci Technol
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
Purpose: This study investigates the association between visual function and retinal vasculature metrics, particularly perfusion capacity (PC), in eyes with idiopathic epiretinal membrane (iERM), using optical coherence tomography angiography (OCTA).
Methods: This retrospective study includes 30 eyes from 30 iERM patients who had surgery, with a three-month follow-up period. In addition, 28 eyes from 28 healthy individuals served as a control group.
EJNMMI Radiopharm Chem
January 2025
Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, 171 76, Sweden.
Background: Beyond the use of conventional short-lived PET radionuclides, there is a growing interest in tracking larger biomolecules and exploring radiotheranostic applications. One promising option for imaging medium-sized molecules and peptides is ⁵⁵Co (T₁/₂ = 17.5 h, β⁺ = 76%), which enables imaging of new and already established tracers with blood circulation of several hours.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215613, China.
Ultrasound blood flow imaging plays a crucial role in the diagnosis of cardiovascular and cerebrovascular diseases. Conventional ultrafast ultrasound plane-wave imaging techniques have limited capabilities in microvascular imaging. To enhance the quality of blood flow imaging, this study proposes a microbubble-based H-Scan ultrasound imaging technique.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Hepatobiliary Surgery and Liver Transplantation Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, China.
Purpose: Cancer-associated fibroblasts (CAFs) are the primary stromal component of the tumor microenvironment in hepatocellular carcinoma (HCC), affecting tumor progression and post-resection recurrence. Fibroblast activation protein (FAP) is a key biomarker of CAFs. However, there is limited evidence on using FAP as a target in near-infrared (NIR) fluorescence imaging for HCC.
View Article and Find Full Text PDFPediatr Cardiol
January 2025
Arkansas Children's Hospital, Arkansas Children's Hospital, 1 Children's Way, Slot 512-3, Little Rock, AR, 72202, USA.
Patent ductus arteriosus (PDA) stenting is a vital intervention for neonates with ductal-dependent blood flow, offering an attractive alternative to surgical shunt placement. Despite its benefits, the procedure poses risks such as ductal spasm, branch pulmonary artery compromise, and pseudoaneurysm formation. This report presents two complex neonatal cases with distinct outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!