Purpose: Body composition analysis in colorectal cancer (CRC) typically utilises a single 2D-abdominal axial CT slice taken at the mid-L3 level. The use of artificial intelligence (AI) allows for analysis of the entire L3 vertebra (non-mid-L3 and mid-L3). The goal of this study was to determine if the use of an AI approach offered any additional information on capturing body composition measures.

Methods: A total of 2203 axial CT slices of the entire L3 level (4-46 slices were available per patient) were retrospectively collected from 203 CRC patients treated at Western Health, Melbourne (97 males; 47.8%). A pretrained artificial intelligence (AI) model was used to segment muscle, visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) on these slices. The difference in body composition measures between mid-L3 and non-mid-L3 scans was compared for each patient, and for males and females separately.

Results: Body composition measures derived from non-mid-L3 scans exhibited a median range of 0.85% to 6.28% (average percent difference) when compared to the use of a single mid-L3 scan. Significant variation in the VAT surface area ( = 0.02) was observed in females compared to males, whereas male patients exhibited a greater variation in SAT surface area ( < 0.001) and radiodensity ( = 0.007).

Conclusion: Significant differences in various body composition measures were observed when comparing non-mid-L3 slices to only the mid-L3 slice. Researchers should be aware that considering only the use of a single midpoint L3 CT scan slice will impact the estimate of body composition measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597731PMC
http://dx.doi.org/10.1155/2023/1047314DOI Listing

Publication Analysis

Top Keywords

body composition
20
composition measures
12
artificial intelligence
12
compared single
8
adipose tissue
8
non-mid-l3 scans
8
surface area
8
body
5
composition
5
identification differences
4

Similar Publications

Blood Flow Restricted Resistance Exercise in Well-Trained Men: Salivary Biomarker Responses and Oxygen Saturation Kinetics.

J Strength Cond Res

December 2024

Jayhawk Athletic Performance Laboratory, Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas.

Eserhaut, DA, DeLeo, JM, and Fry, AC. Blood flow restricted resistance exercise in well-trained men: Salivary biomarker responses and oxygen saturation kinetics. J Strength Cond Res 38(12): e716-e726, 2024-Resistance exercise with continuous lower-limb blood flow restriction (BFR) may provide supplementary benefit to highly resistance-trained men.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome (MS) accelerate arterial stiffening, increasing cardiovascular (CV) risk after transplant. BMI is limited by inability to differentiate muscle, fat mass, and fat distribution patterns. The aim of this study was to identify the best anthropometric measure to detect arterial stiffness as assessed by pulse wave velocity (PWV) in a racially diverse pediatric transplant population.

View Article and Find Full Text PDF

Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity.

Curr Obes Rep

January 2025

Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.

Purpose Of Review: Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles.

Recent Findings: Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases.

View Article and Find Full Text PDF

Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.

View Article and Find Full Text PDF

Background And Aims: Body composition parameters associated with aerobic fitness, mirrored by maximal oxygen consumption (V̇Omax), have recently gained interest as indicators of physical efficiency in facioscapulohumeral dystrophy (FSHD). Bioimpedance analysis (BIA) allows a noninvasive and repeatable estimate of body composition but is based on the use of predictive equations which, if used in cohorts with different characteristics from those for which the equation was originally formulated, could give biased results. Instead, the phase angle (PhA), a BIA raw bioelectrical parameter reflecting body fluids distribution, could provide reliable data for such analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!