Herein we report the colorimetry and an electrochemical for the determination of dopamine (DA) by using MnO nanoparticles and graphene nanosheets composite (MnO@G) that display oxidase mimicking property. MnO@G could directly oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) into a blue product (oxTMB) without extra oxidants such as HO. Nevertheless, the presence of DA will inhibit the TMB oxidation due to the presence of the competitive reaction of MnO@G and DA, giving a product color change from blue to colorless. A colorimetric assay for detect the concentration of DA was worked out according to this finding. Response is linear in the 0.1 to 15 μM DA concentration range, and the detection limit is 0.14 μM. Wider detection range is achieved in an electrochemical method which is due to the pronounced electrocatalytic activity of MnO@G. The MnO@G was modified on the surface of the glassy carbon electrode in order to fabricate one type electrochemical sensor. The sensor achieves a wide detection two linear ranges from 0.4 to 70 μM, with the detection limit of 1.16 μM. The detection of DA in real serum sample proved that the nanozyme based on MnO@G could be developed into a colorimetry and electrochemical dual-readout sensing platform.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594154 | PMC |
http://dx.doi.org/10.1039/d3ra05879d | DOI Listing |
Anal Chim Acta
February 2025
College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
Background: Aflatoxin B1 (AFB1) is a secondary metabolite produced by Aspergillus flavus and Aspergillus parasiticus. This toxin is highly carcinogenic and toxic, posing a serious threat to human and animal health. AFB1 primarily enters the human body through contaminated food, particularly peanuts, corn, nuts, and wheat.
View Article and Find Full Text PDFSmall
January 2025
Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
DNA methylation is an epigenetic mechanism that regulates gene expression and is implicated in diseases such as cancer and atherosclerosis. However, traditional clinical methods for detecting DNA methylation often lack sensitivity and specificity, making early diagnosis challenging. Nanomaterials offer a solution with their unique properties, enabling highly sensitive photochemical and electrochemical detection techniques.
View Article and Find Full Text PDFMolecules
January 2025
Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
Compared to natural enzymes, the development of efficient artificial simulated enzymes, such as those based on bimetallic materials with high catalytic activity and good stability, is an important way until now. Herein, we employed ZnCoO microspheres as carriers to synthesize Pt-doped composites with different amounts using a one-pot method. The morphology and structure of the synthesized materials were characterized using XRD, SEM, BET, FT-IR, XPS, and Zeta potential techniques.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China. Electronic address:
Background: Carbosulfan (CBS) is a widely used carbamate pesticide in agricultural production, its easy decomposition into hypertoxic carbofuran poses serious threats to human health and food safety. Therefore, sensitive and accurate detection of CBS is of significant importance. Conventional chromatography-based techniques require expensive instruments and complicated sample pretreatment, limiting their application for fast detection.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Electronics and Communication, Vidyavardhaka College of Engineering, Mysuru, India.
Water contaminated with chromium (Cr) poses significant risks to public health and the environment, necessitating reliable detection techniques. This review study uniquely provides a comprehensive analysis of optical methods for detecting Cr pollution in water, focusing on both reagent-based and reagentless approaches, as well as various sensing platforms. Unlike existing reviews that primarily focus on electrochemical and colorimetric/fluorimetric methods, this work highlights the untapped potential of optical technologies, such as colorimetry, SPR, UV-Vis spectroscopy, and more, in detecting distinct Cr species, including reagent and reagentless based approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!