Background: Early-life adversity (ELA) is associated with increased risk for mood disorders, including depression and substance use disorders. These disorders are characterized by impaired reward-related behaviors, suggesting compromised operations of reward-related brain circuits. However, the brain regions engaged by ELA that mediate these enduring consequences of ELA remain largely unknown. In an animal model of ELA, we identified aberrant reward-seeking behaviors, a discovery that provides a framework for assessing the underlying circuits.
Methods: Employing TRAP2 (targeted recombination in active populations) male and female mice, in which neurons activated within a defined time frame are permanently tagged, we compared ELA- and control-reared mice, assessing the quantity and distribution of ELA-related neuronal activation. After validating the TRAP2 results using native c-Fos labeling, we defined the molecular identity of this population of activated neurons.
Results: We uniquely demonstrated that the TRAP2 system is feasible and efficacious in neonatal mice. Surprisingly, the paraventricular nucleus of the thalamus was robustly and almost exclusively activated by ELA and was the only region distinguishing ELA from typical rearing. Remarkably, a large proportion of ELA-activated paraventricular nucleus of the thalamus neurons expressed CRF, the receptor for the stress-related peptide, corticotropin-releasing hormone, but these neurons did not express corticotropin-releasing hormone itself.
Conclusions: The paraventricular nucleus of the thalamus, an important component of reward circuits that is known to encode remote, emotionally salient experiences to influence future motivated behaviors, encodes adverse experiences as remote as those occurring during the early postnatal period and is thus poised to contribute to the enduring deficits in reward-related behaviors consequent to ELA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593902 | PMC |
http://dx.doi.org/10.1016/j.bpsgos.2023.01.002 | DOI Listing |
Neuropharmacology
December 2024
Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland.
Although angiotensin 1-7 (Ang 1-7) and its role as a part of the "protective" axis of the renin-angiotensin system are well described in the literature, the mechanisms of its angiotensin II-like pressor and tachycardic effects following its acute central administration are not fully understood. It was the aim of the present study to examine which receptors contribute to the aforementioned cardiovascular effects. Ang 1-7 and antagonists for glutamate, GABA, vasopressin, thromboxane A (TP), α-adrenergic, and P2X purinoceptors or modulators of oxidative stress were injected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anesthetized male Wistar rats.
View Article and Find Full Text PDFNeurosci Biobehav Rev
December 2024
Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0W2, Canada. Electronic address:
The paraventricular nucleus of the thalamus (PVT) is generating interest because of evidence establishing a role for this midline thalamic nucleus in behavior. Early tracing studies demonstrated that afferent fibers from the PVT and limbic cortex converge with dopamine fibers within subcompartments of the ventral striatum. Subsequent tracing studies expanded on these observations by establishing that the PVT provides a dense projection to a continuum of striatal-like regions that include the nucleus accumbens and the extended amygdala.
View Article and Find Full Text PDFNeurol Int
December 2024
Department of Psychology, University of Maine, 301 Williams Hall, Orono, ME 04469-5742, USA.
Cluster headache is a severe, poorly understood disorder for which there are as yet virtually no rationally derived treatments. Here, Lee Kudrow's 1983 theory, that cluster headache is an overly zealous response to hypoxia, is updated according to current understandings of hypoxia detection, signaling, and sensitization. It is shown that the distinctive clinical characteristics of cluster headache (circadian timing of attacks and circannual patterning of bouts, autonomic symptoms, and agitation), risk factors (cigarette smoking; male gender), triggers (alcohol; nitroglycerin), genetic findings (GWAS studies), anatomical substrate (paraventricular nucleus of the hypothalamus, solitary tract nucleus/NTS, and trigeminal nucleus caudalis), neurochemical features (elevated levels of galectin-3, nitric oxide, tyramine, and tryptamine), and responsiveness to treatments (verapamil, lithium, melatonin, prednisone, oxygen, and histamine desensitization) can all be understood in terms of hypoxic signaling.
View Article and Find Full Text PDFBehav Brain Res
December 2024
Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Electronic address:
Acting centrally, dopamine has been shown to induce ergogenic effects derived from its influence on thermoregulation, motivation, reward, and motor control. Thus, to evaluate the role of the central dopaminergic system in hypothalamic neuronal activation and its relationship with exercise performance, Wistar rats were intracerebroventricularly injected with saline (SAL) or SCH-23390 (SCH, dopamine D1 receptor blocker) at rest and before timed submaximal exercise (∼13 min) or exercise until fatigue. Core body and tail temperatures were recorded throughout the exercise.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, United States. Electronic address:
Neurogenic hypertension (NH) is characterized by heightened sympathetic activity mediated by angiotensin II in specific brain areas including the paraventricular nucleus and circumventricular organs. While strategies targeting sympathetic activity have shown effectiveness in managing NH, their invasive nature hinders their widespread clinical adoption. Conversely, nose-to-brain drug delivery is emerging as a promising approach to access the brain with reduced invasiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!