The effects of plastic effluent in Kano Metropolis on cytotoxicity and genotoxicity were examined using a test on root cells. The physicochemical characteristics of industrial wastewater were assessed, and the results showed values that were higher than the required criteria; this implies that the effluent was not treated before to disposal. For 96 hours, a group of 40 onion bulbs was cultivated in various concentrations of plastic effluent: 15, 30, 45, and 60% (/). The control was made up of distilled water. Following 96 hours, the four treated root tips from each replication's bulbs were harvested and subjected to the acetoorcein squash technique for cytogenetic analysis. High concentrations of the industrial effluents had severe development retarding effects on the root tips. Root growth was inhibited with EC values of 48% after treatment with the effluents in comparison to control. When was exposed to different quantities of plastic effluent, the results of an analysis of variance (ANOVA) showed that the mean root length varied, and this variation was statistically significant ( < 0.05). With rising effluent concentrations, the mitotic index (M.I.) rapidly dropped. Chromosomal abnormalities were caused by the plastic effluent in the root cells of , especially sticky chromosome and binucleated cells being the most frequently seen at lower concentrations of 15%. It was discovered that the compounds found in plastic wastewater could injure live beings as well as harm the environment if not treated. Legal mechanisms must be used to push businesses and manufacturers to switch to environmentally friendly technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597712 | PMC |
http://dx.doi.org/10.1155/2023/5161017 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Jeffrey Sachs Center on Sustainable Development, Sunway University, 47500, Sunway City, Selangor, Malaysia.
Wastewater treatment plant (WWTP) is a sustainable technique for making wastewater reusable for non-potable purposes. However, in developing countries, most conventional WWTPs are not equipped to trap all pharmaceutical residues (PRs) and pharmaceutically active chemicals (PhACs). This study aims to perform non-target screening of these contaminants in wastewater and explore health and environmental hazards and the removal efficiency of a WWTP in Malaysia.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, USA; Missouri Water Center, University of Missouri, Columbia, USA. Electronic address:
Polymer-coated controlled-release fertilizers (PC-CRFs) are valued for nutrient efficiency, but concerns remain about the long-term impacts of their plastic coatings on soil health. This study investigates the physicochemical characteristics of two commercially available PC-CRFs, type A and B, and their changes during nutrient release. Accelerated nutrient release experiments were conducted for 25 d in ultrapure water (free water) and saturated soil with five wet-dry cycles.
View Article and Find Full Text PDFJ Contam Hydrol
December 2024
Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht 41635-1314, Iran.
Microbially induced calcite precipitation (MICP) while neutralizing soil pH, can lead to pore clogging which in turn may reduce bacteria transport. This study aimed to evaluate the effectiveness of the MICP process for E. coli filtration in two acidic soils.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
Environ Monit Assess
December 2024
Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran.
Wastewater treatment plants (WWTPs) are one of the major collection points of microplastics (MPs). The MPs in influents and effluents of WWTPs were assessed for three cities on the southern coast of the Caspian Sea in the winter and spring seasons. The MP removal rate of WWTPs ranged between 71.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!