Research Question: Decidualization is critical to the establishment of mouse normal pregnancy. The fibroblast-like stromal cells in the process form polyploid multinucleated cells. Aurora kinase B (Aurora B) has previously been shown to regulate polyploidy in various cells. However, whether Aurora B regulates the formation of decidual cell polyploidization and its regulatory mechanisms remain poorly understood.
Design: Establish decidualization model of mouse primary endometrial stromal cells in vitro. Construct pseudopregnancy mouse models and delayed-activation mouse models. Detect Aurora B and polyploidization related genes in mouse uteri treated by Aurora B specific inhibitor Barasertib and CPT.
Results: In this study, we found that Aurora B was strongly expressed in endometrial stromal cells after implantation. Additionally, Aurora B was remarkably up regulated in the stromal cells of oil-induced deciduomoa and in vitro decidualization. As an Aurora B specific inhibitor, Barasertib significantly inhibits the mRNA expression of Prl8a2, a marker of mouse decidualization. Furthermore, the protein levels of p-Plk1, Survivin and p-Cdk1 were inhibited by Barasertib. CPT-induced DNA damage suppressed Aurkb (encodes Aurora B) expression, thus resulting in polyploidization.
Conclusion: Our data shows that Aurora B is expressed in decidual stromal cells of implantation sites and plays a key role for mouse decidualization. The protein of Plk1, Survivn, and Cdk1 may participate in formation of decidual cell polyploidization during mouse decidualization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/aji.13793 | DOI Listing |
Mol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Obstetrics and Gynecology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, China.
Background: Endometriosis (EMS) is a difficult gynecological disease to cure. Frizzled-7 (FZD7) has been shown to be associated with the development of EMS, but its specific mechanism remains unclarified. This study aims to explore the role of FZD7 in EMS.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Life Science, Northeast Forestry University, Harbin 150040, China.
Melanoma is among the most common malignancies and has recently exhibited increased resistance to treatments, resulting in a more aggressive disease course. Mesenchymal stem cells (MSCs) secrete cytokines both in vivo and in vitro, which regulate tumor cell signaling pathways and the tumor microenvironment, thereby influencing tumor progression. This study investigates the anti-melanogenesis effects of sheep umbilical cord mesenchymal stem cells (SUCMSCs) to assess their potential application in melanoma treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!