Zeolitic imidazolate frameworks (ZIFs) bearing rich accessible Lewis acidic/basic active sites and hierarchical pores are favorable to catalyze the cycloaddition of CO and epoxides with high yields of the target product under mild conditions. In this context, a facile etching and regrowth method is developed here to convert unstable leaf-like zinc-based ZIF-L to one kind of bimetallic ZIF (namely, ZnFe-ZIF) with a rough surface, a porous and accessible three-dimensional structure, and abundant Lewis acidic sites. Owing to the high Fe-doping content functioning as rich Lewis acidic sites and the high CO adsorbing capability together with the structural advantages to favor the mass diffusion, the yield of target cyclic carbonate can be up to >99% for the cycloaddition of CO and epichlorohydrin by ZnFe-ZIF at 6 h under mild conditions (0.1 MPa and 80 °C) with the selectivity of 100%. More importantly, unlike ZIF-L, which is unstable in the reaction system, the synthesized ZnFe-ZIF displays a satisfactory chemical stability without a loss in catalytic activities after five recycling runs as well as good substrate tolerance, making ZnFe-ZIF a potential high-performance catalyst for CO conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c10770 | DOI Listing |
ACS Nano
January 2025
Department of Biomedical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
Detection of biomarkers associated with physiological conditions provides critical insights into healthcare and disease management. However, challenges in sampling and analysis complicate the detection and quantification of protein biomarkers within the epidermal layer of the skin and in viscous liquid biopsy samples. Here, we present the "Lab-on-the-Needles" concept, utilizing a microneedle patch-based sensing box (MNP-based SenBox) for mobile healthcare applications.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Xuefu Road, Harbin, 150080, P. R. China.
The bi-transition-metal interstitial compounds (BTMICs) are promising for water electrolysis. The previous BTMICs are usually composed of irregular particles. Here, this work shows the synthesis of novel 1D CoMoC-based heterojunction nanowires (1D Co/CoMoC) with diameters about 50 nm and a length-to-diameter ratio about 20 for efficient water electrolysis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China. Electronic address:
Understanding the impact of nanomaterials on drug-protein/cell interactions is crucial for comprehending their in vivo biological effects. We investigated the impact of zeolitic imidazolate framework (ZIF)-8 on the interaction between curcumin (Cur) and human serum albumin (HSA) using various spectroscopic techniques and molecular docking. Additionally, we examined its effect on drug-cell interaction using HepG2 cells and Escherichia coli (E.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China. Electronic address:
At present, it is highly important to develop nanopesticide, which can improve the effect of pesticides and reduce the risks of environmental. Zeolitic imidazolate framework (ZIF) is usually used as a nanocarrier of nanopesticide, which has a porous structure and stimuli-responsive properties. However, the drug loading performance and stability of ZIF are poor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
Metal-organic frameworks (MOFs) provide diverse applications across a wide range of scientific disciplines, including drug/nucleic acid (NA) delivery. In the subclass of MOFs, zeolitic imidazolate framework-8 (ZIF-8) is well regarded due to its exceptional physicochemical properties. Biomolecules can be encapsulated and released under precise conditions within ZIF, making it an important material for materials science and biomedical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!