Aging has strong genetic components and the list of genes that may regulate the aging process is collected in the GenAge database. There may be characteristic patterns in the amino acid sequences of aging-related proteins that distinguish them from other proteins and this information will lead to a better understanding of the aging process. To test this hypothesis, human protein sequences are extracted from the UniProt database and the relative frequency of every amino acid residue in aging-related proteins and the remaining proteins is calculated. The main observation is that the mean relative frequency of aspartic acid (D) is consistently higher, while the mean relative frequencies of tryptophan (W) and leucine (L) are consistently lower in aging-related proteins compared to the non-aging-related proteins for the human and four examined model organisms. It is also observed that the mean relative frequency of aspartic acid is higher, while the mean relative frequency of tryptophan is lower in pro-longevity proteins compared to anti-longevity proteins in model organisms. Finally, it is found that aging-related proteins tend to be longer than non-aging-related proteins. It is hoped that this analysis initiates further computational and experimental research to explore the underlying mechanisms of these findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adbi.202300436 | DOI Listing |
J Integr Neurosci
December 2024
Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College, 241002 Wuhu, Anhui, China.
Background: K48-linked ubiquitin chain (Ub-K48) is a crucial ubiquitin chain implicated in protein degradation within the ubiquitin-proteasome system. However, the precise function and molecular mechanism underlying the role of Ub-K48 in the pathogenesis of Alzheimer's disease (AD) and neuronal cell abnormalities remain unclear. The objective of this study was to examine the function of K48 ubiquitination in the etiology of AD, and its associated mechanism of neuronal apoptosis.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
High glucose (HG) induced endothelial senescence is related to endothelial dysfunction and cardiovascular complications in diabetic patients. Humanin, a member of mitochondrial derived peptides (MDPs), is thought to contribute to aging-related cardiovascular protection. The goal of the study is to explore the pathogenesis of HG-induced endothelial senescence and potential anti-senescent effects of Humanin.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Kunshan Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu, China.
Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly worldwide. Anti-vascular endothelial growth factor (anti-VEGF) injections remain the first-line therapy for AMD. However, their high cost and the need for frequent administration pose challenges to long-term adherence, highlighting the need for accessible and cost-effective preventive strategies.
View Article and Find Full Text PDFNPJ Sci Food
December 2024
Institute of Agricultural Biotechnology, Jingchu University of Technology, Jingmen, China.
Artemisia argyi Lévl. et Vant. (A.
View Article and Find Full Text PDFbioRxiv
December 2024
Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA.
Aging is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and numerous other diseases, but the mechanisms of these aging-related effects remain elusive. Chronic changes in the microenvironment and paracrine signaling behaviors have been implicated, but remain understudied. Here, for the first time, we directly compare extracellular vesicles obtained from young and aged patients to identify therapeutic or disease-associated agents, and directly compare vesicles isolated from heart tissue matrix (TEVs) or plasma (PEVs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!