A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamically Cross-Linked, Self-Healable, and Stretchable All-Hydrogel Supercapacitor with Extraordinary Energy Density and Real-Time Pressure Sensing. | LitMetric

Dynamically Cross-Linked, Self-Healable, and Stretchable All-Hydrogel Supercapacitor with Extraordinary Energy Density and Real-Time Pressure Sensing.

Small

Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China.

Published: March 2024

Wearable electronics with flexible, integrated, and self-powered multi-functions are becoming increasingly attractive, but their basic energy storage units are challenged in simultaneously high energy density, self-healing, and real-time sensing capability. To achieve this, a fully flexible and omni-healable all-hydrogel, that is dynamically crosslinked PVA@PANI hydrogel, is rationally designed and constructed via aniline/DMSO-emulsion-templated in situ freezing-polymerization strategy. The PVA@PANI sheet, not only possesses a honeycombed porous conductive mesh configuration with superior flexibility that provides numerous channels for unimpeded ions/electron transport and maximizes the utilization efficiency of pseudocapacitive PANI, but also can conform to complicated body surface, enabling effective detection and discrimination of body movements. As a consequence, the fabricated flexible PVA@PANI sheet electrode demonstrates an unprecedented specific capacitance (936.8 F g ) and the assembled symmetric flexible all-solid-state supercapacitor delivers an extraordinary energy density of 40.98 Wh kg , outperforming the previously highest-reported values of stretchable PVA@PANI hydrogel-based supercapacitors. What is more, such a flexible supercapacitor electrode enables precisely monitoring the full-range human activities in real-time, and fulfilling a quick response and excellent self-recovery. These outstanding flexible sensing and energy storage performances render this emerging PVA@PANI hydrogel highly promising for the next-generation wearable self-powered sensing electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202305448DOI Listing

Publication Analysis

Top Keywords

energy density
12
extraordinary energy
8
energy storage
8
pva@pani hydrogel
8
pva@pani sheet
8
flexible
6
energy
5
pva@pani
5
dynamically cross-linked
4
cross-linked self-healable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!