Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Acute lung injury and subsequent resolution following severe injury are coordinated by a complex lung microenvironment that includes extracellular vesicles (EVs). We hypothesized that there is a heterogenous population of EVs recruited to the alveoli postinjury and that we could identify specific immune-relevant mediators expressed on bronchoalveolar lavage (BAL) EVs as candidate biomarkers of injury and injury resolution.
Methods: Mice underwent 30% TBSA burn injury and BAL fluid was collected 4 hours postinjury and compared with sham. Extracellular vesicles were purified and single vesicle flow cytometry (vFC) was performed using fluorescent antibodies to quantify the expression of specific cell surface markers on individual EVs. Next, we evaluated human BAL specimens from injured patients to establish translational relevance of the mouse vFC analysis. Human BAL was collected from intubated patients following trauma or burn injury, EVs were purified, then subjected to vFC analysis.
Results: A diverse population of EVs were mobilized to the alveoli after burn injury in mice. Quantitative BAL vFC identified significant increases in macrophage-derived CD44+ EVs (preinjury, 10.8% vs. postinjury, 13%; p < 0.05) and decreases in IL-6 receptor alpha (CD126) EVs (preinjury, 19.3% vs. postinjury, 9.3%, p < 0.05). Bronchoalveolar lavage from injured patients also contained a heterogeneous population of EVs derived from myeloid cells, endothelium, and epithelium sources, with CD44+ EVs being highly detected.
Conclusion: Injury causes mobilization of a heterogeneous population of EVs to the alveoli in both animal models and injured patients. Defining EV release after injury will be critical in identifying diagnostic and therapeutic targets to limit postinjury acute lung injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10922252 | PMC |
http://dx.doi.org/10.1097/TA.0000000000004176 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!