Interpreting diffuse intensities in electron diffraction patterns can be challenging in samples with high atomic-level complexity, as often is the case with multi-principal element alloys. For example, diffuse intensities in electron diffraction patterns from simple face-centred cubic (fcc) and related alloys have been attributed to short-range order, medium-range order or a variety of different {111} planar defects, including thin twins, thin hexagonal close-packed layers, relrod spiking and incomplete ABC stacking. Here we demonstrate that many of these diffuse intensities, including [Formula: see text]{422} and [Formula: see text]{311} in ⟨111⟩ and ⟨112⟩ selected area diffraction patterns, respectively, are due to reflections from higher-order Laue zones. We show similar features along many different zone axes in a wide range of simple fcc materials, including CdTe, pure Ni and pure Al. Using electron diffraction theory, we explain these intensities and show that our calculated intensities of projected higher-order Laue zone reflections as a function of deviation from their Bragg conditions match well with the observed intensities, proving that these intensities are universal in these fcc materials. Finally, we provide a framework for determining the nature and location of diffuse intensities that could indicate the presence of short-range order or medium-range order.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-023-06530-6DOI Listing

Publication Analysis

Top Keywords

diffuse intensities
20
electron diffraction
16
diffraction patterns
16
intensities
9
intensities electron
8
short-range order
8
order medium-range
8
medium-range order
8
higher-order laue
8
fcc materials
8

Similar Publications

Objectives: Head and neck malignancies (HNMs) encompass a variety of cancers that affect the oral and para-oral tissues, the most common of which are squamous cell carcinomas. Radiotherapy is commonly used to treat these cancers, often involving radiation exposure to the salivary glands. This study aims to investigate the early impacts of radiotherapy on the internal microstructure of the salivary gland cells and identify which gland exhibits the highest level of radiosensitivity.

View Article and Find Full Text PDF

The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).

View Article and Find Full Text PDF

Introduction: Low-grade myofibroblastic sarcoma (LGMS) is an atypical and extremely infrequent type of tumor, primary mass being usually present in subcutaneous and soft tissue. Bony involvement is very rare. It has a very high chance of recurrence locally due to its aggressive biological behavior, metastasis in other parts of body is rarely seen.

View Article and Find Full Text PDF

Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.

View Article and Find Full Text PDF

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!