For the past 50 years, superconducting detectors have offered exceptional sensitivity and speed for detecting faint electromagnetic signals in a wide range of applications. These detectors operate at very low temperatures and generate a minimum of excess noise, making them ideal for testing the non-local nature of reality, investigating dark matter, mapping the early universe and performing quantum computation and communication. Despite their appealing properties, however, there are at present no large-scale superconducting cameras-even the largest demonstrations have never exceeded 20,000 pixels. This is especially true for superconducting nanowire single-photon detectors (SNSPDs). These detectors have been demonstrated with system detection efficiencies of 98.0% (ref. ), sub-3-ps timing jitter, sensitivity from the ultraviolet to the mid-infrared and microhertz dark-count rates, but have never achieved an array size larger than a kilopixel. Here we report on the development of a 400,000-pixel SNSPD camera, a factor of 400 improvement over the state of the art. The array spanned an area of 4 × 2.5 mm with 5 × 5-μm resolution, reached unity quantum efficiency at wavelengths of 370 nm and 635 nm, counted at a rate of 1.1 × 10 counts per second (cps) and had a dark-count rate of 1.0 × 10 cps per detector (corresponding to 0.13 cps over the whole array). The imaging area contains no ancillary circuitry and the architecture is scalable well beyond the present demonstration, paving the way for large-format superconducting cameras with near-unity detection efficiencies across a wide range of the electromagnetic spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-023-06550-2 | DOI Listing |
Sci Rep
January 2025
Walter Schottky Institute, Technical University of Munich, 85748, Garching, Germany.
We investigate the growth of amorphous MoSi thin films using magnetron co-sputtering and optimize the growth conditions with respect to crystal structure and superconducting properties (e.g., critical temperature [Formula: see text]).
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.
The noise equivalent temperature difference (NETD) indicates the minimum temperature difference resolvable by using an infrared detector. The lower the NETD, the better the sensor can register small temperature differences. In this work, we proposed a strategy to achieve a high temperature resolution using a superconducting nanowire single-photon detector (SNSPD) with ultra-high sensitivity.
View Article and Find Full Text PDFWe demonstrate a (FMCW) light detection and ranging (LIDAR) system utilizing a (SNSPD) to measure vibrational spectra using reflected signals at the single-photon level. By determining the time-variant Doppler shift of the reflected probe signal, this system successfully reconstructs various audio signals, including pure sinusoidal, multi-tonal, and musical signals, up to 200 Hz, limited by the laser frequency modulation rate and the Nyquist sampling theorem. Additionally, we employ scanning galvo mirrors to perform 3D measurements and map audio signals from different regions in the scanned field of view.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.
Material challenges are the key issue in Majorana research, where surface disorder constrains device performance. Here, we tackle this challenge by embedding PbTe nanowires within a lattice-constant-matched crystal. The wire edges are shaped by self-organized growth instead of lithography, resulting in nearly atomically flat facets along both cross-sectional and longitudinal directions.
View Article and Find Full Text PDFACS Nano
January 2025
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China.
Moiré superlattices, created by stacking different van der Waals materials at twist angles, have emerged as a versatile platform for exploring intriguing phenomena such as topological properties, superconductivity, the quantum anomalous Hall effect, and the unconventional Stark effect. Additionally, the formation of moiré superlattice potential can generate spontaneous symmetry breaking, leading to an anisotropic optical response and electronic transport behavior. Herein, we propose a two-step chemical vapor deposition (CVD) strategy for synthesizing WS/SbS moiré superlattices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!