This study aims to produce beneficial products with pomegranate peel waste through pyrolysis. For this purpose, the usability of the liquid product as a biofuel and the solid product as an adsorbent for dye removal was investigated. To characterize the bio-oil and biochar produced under the best pyrolysis conditions, Fourier transforms infrared spectroscopy (FT-IR), Gas chromatography-mass spectrometry (GC-MS), calorific value, Brunauer-Emmett-Teller (BET), and Scanning electron microscopy (SEM) analyses were conducted. When we examine the FT-IR spectrum of the bio-oil, the presence of phenol, alcohol, ketone, and aldehyde groups is seen in the structure. The GC-MS analysis demonstrated that phenol content was 27.9%, aldehyde content was 19%, acid compound content was 18.28%, ketone content was 8.7%, and aromatic compound content was 8.4%. The lower calorific value of bio-oil was determined as 27.33 MJ/kg. It was observed that activated carbon produced from biochar at a 3:1 KOH/biochar impregnation ratio and a carbonization temperature of 800 °C exhibited the highest surface area (1307 m/g). In adsorption analysis, it was observed that the adsorption efficiency was higher at pH 9 and 35 °C and with 150 ppm initial concentration. Langmuir and Freundlich adsorption isotherms were determined, and the high R (0.99) was consistent with the Langmuir methylene blue (MB) adsorption model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-30527-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!