Simulating quantum imaginary-time evolution (QITE) is a significant promise of quantum computation. However, the known algorithms are either probabilistic (repeat until success) with unpractically small success probabilities or coherent (quantum amplitude amplification) with circuit depths and ancillary-qubit numbers unrealistically large in the mid-term. Our main contribution is a new generation of deterministic, high-precision QITE algorithms that are significantly more amenable experimentally. A surprisingly simple idea is behind them: partitioning the evolution into a sequence of fragments that are run probabilistically. It causes a considerable reduction in wasted circuit depth every time a run fails. Remarkably, the resulting overall runtime is asymptotically better than in coherent approaches, and the hardware requirements are even milder than in probabilistic ones. Our findings are especially relevant for the early fault-tolerance stages of quantum hardware.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600201 | PMC |
http://dx.doi.org/10.1038/s41598-023-45540-2 | DOI Listing |
Phys Rev Lett
December 2024
Tel Aviv University, School of Physics and Astronomy, Tel Aviv 6997801, Israel.
Measurement-based quantum computation (MBQC) is a universal platform to realize unitary gates, only using measurements that act on a preprepared entangled resource state. By deforming the measurement bases, as well as the geometry of the resource state, we show that MBQC circuits always transmit and act on the input state but generally realize nonunitary logical gates. In contrast to the stabilizer formalism that is often used for unitary gates, we find that ZX-calculus is an ideal computation method for these nonunitary gates.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China.
By braiding non-Abelian anyons it is possible to realize fault-tolerant quantum algorithms through the computation of Jones polynomials. So far, this has been an experimentally formidable task. In this Letter, a photonic quantum system employing two-photon correlations and nondissipative imaginary-time evolution is utilized to simulate two inequivalent braiding operations of Majorana zero modes.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
Center for Quantum Computing, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
The eigenstate thermalization hypothesis (ETH) plays a major role in explaining thermalization of isolated quantum many-body systems. However, there has been no proof of the ETH in realistic systems due to the difficulty in the theoretical treatment of thermal energy eigenstates of nonintegrable systems. Here, we write down analytically thermal eigenstates of nonintegrable spin chains.
View Article and Find Full Text PDFJ Chem Phys
October 2024
Intelligent Systems Division, NASA Ames Research Center, Moffett Field, California 94035, USA.
Recent research has shown that wavefunction evolution in real and imaginary time can generate quantum subspaces with significant utility for obtaining accurate ground state energies. Inspired by these methods, we propose combining quantum subspace techniques with the variational quantum eigensolver (VQE). In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits.
View Article and Find Full Text PDFJ Chem Phys
October 2024
Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
The matrix product state (MPS) Ansatz offers a promising approach for finding the ground state of molecular Hamiltonians and solving quantum chemistry problems. Building on this concept, the proposed technique of quantum circuit MPS (QCMPS) enables the simulation of chemical systems using a relatively small number of qubits. In this study, we enhance the optimization performance of the QCMPS Ansatz by employing the variational quantum imaginary time evolution (VarQITE) approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!