Development and pharmaceutical investigation of novel cervical cancer-targeting and redox-responsive melittin conjugates.

Sci Rep

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Icerenkoy, Kayisdagi Cd., Atasehir, 34752, Istanbul, Turkey.

Published: October 2023

Cervical cancer has recently become one of the most prevalent cancers among women throughout the world. Traditional cancer therapies generate side effects due to off-target toxicity. Thus, novel cancer medications coupled with suitable drug delivery systems are required to improve cancer therapies. Melittin peptide has a high affinity to disrupt cancer cells. In this study, we designed targeted and redox-responsive Melittin conjugates for cervical cancer and then tested them in vitro. Folic acid and squamous cell carcinoma-specific peptide (CKQNLAEG) were used as targeting agents to design various conjugates. Our findings indicate that both anticancer conjugates were effective against different cancer cell lines, including MCF-7, C33A, and HeLa. Moreover, these conjugates were found to have antioxidant and antibacterial effects as well as reduced hemolytic activity. The CM-Target (N-terminus cysteine modified-Melittin-targeting peptide-functionalized conjugate) has become more stable and acted specifically against squamous cell carcinoma, whereas folic acid (FA)-containing conjugates acted efficiently against all cancer types studied, especially for breast cancer. According to our results, these anticancer conjugates may be possible anticancer drug candidates that have fewer adverse effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600185PMC
http://dx.doi.org/10.1038/s41598-023-45537-xDOI Listing

Publication Analysis

Top Keywords

cancer
9
redox-responsive melittin
8
melittin conjugates
8
conjugates cervical
8
cervical cancer
8
cancer therapies
8
folic acid
8
squamous cell
8
anticancer conjugates
8
conjugates
7

Similar Publications

The Ataxia-telangiectasia mutated (ATM) is the most important gene for repairing the DNA in Myelodysplastic Neoplasm.

DNA Repair (Amst)

January 2025

Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil.

Myelodysplastic Neoplasm (MDS) is a cancer associated with aging, often leading to acute myeloid leukemia (AML). One of its hallmarks is hypermethylation, particularly in genes responsible for DNA repair. This study aimed to evaluate the methylation and mutation status of DNA repair genes (single-strand - XPA, XPC, XPG, CSA, CSB and double-strand - ATM, BRCA1, BRCA2, LIG4, RAD51) in MDS across three patient cohorts (Cohort A-56, Cohort B-100, Cohort C-76), using methods like pyrosequencing, real-time PCR, immunohistochemistry, and mutation screening.

View Article and Find Full Text PDF

The incidence of keratinocyte carcinoma (KC) is rising globally, significantly burdening healthcare resources. Treatment options include medical treatment, non-invasive procedures, and surgery, each associated with their distinct benefits and risks. With advanced treatment, the procedures become increasingly invasive for the patients and expensive for the society.

View Article and Find Full Text PDF

Purpose: To develop and validate an MRI-based model for predicting postoperative early (≤2 years) recurrence-free survival (RFS) in patients receiving upfront surgical resection (SR) for beyond Milan hepatocellular carcinoma (HCC) and to assess the model's performance in separate patients receiving neoadjuvant therapy for similar-stage tumors.

Method: This single-center retrospective study included consecutive patients with resectable BCLC A/B beyond Milan HCC undergoing upfront SR or neoadjuvant therapy. All images were independently evaluated by three blinded radiologists.

View Article and Find Full Text PDF

Objective: Pulmonary pleomorphic carcinoma is a relatively rare and aggressive subtype of non-small cell lung cancer (NSCLC), with a poor prognosis and early recurrence, and is resistant to conventional therapies. This study investigated the efficacy of immune checkpoint inhibitors (ICIs) in improving the survival outcomes of patients with pulmonary pleomorphic carcinoma with postoperative recurrence.

Methods: We conducted a retrospective analysis of 71 patients with pulmonary pleomorphic carcinoma who underwent pulmonary resection at Tokyo Medical University Hospital between 2008 and 2022.

View Article and Find Full Text PDF

Cystine-Modified Lignin-Copper Coordination Nanocarriers Improve the Therapeutic Efficacy of Tyrosine Kinase Inhibition via Cuproptosis.

ACS Appl Mater Interfaces

January 2025

Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China.

The clinical application of tyrosine kinase inhibitors (TKIs) is rapidly growing and has emerged as a cornerstone in the treatment of both solid tumors and hematologic malignancies. However, resistance to TKI targets and disease progression remain inevitable. Nanocarrier-mediated delivery has emerged as a promising strategy to overcome the limitations of the TKI application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!