Load sharing between synergistic muscles characterized by a ligand-binding approach and elastography.

Sci Rep

Laboratorio de Acústica Ultrasonora, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.

Published: October 2023

The skeletal muscle contraction is determined by cross-bridge formation between the myosin heads and the actin active sites. When the muscle contracts, it shortens, increasing its longitudinal shear elastic modulus ([Formula: see text]). Structurally, skeletal muscle can be considered analogous to the molecular receptors that form receptor-ligand complexes and exhibit specific ligand-binding dynamics. In this context, this work aims to apply elastography and the ligand-binding framework to approach the possible intrinsic mechanisms behind muscle synergism. Based on the short-range stiffness principle and the acoustic-elasticity theory, we define the coefficient [Formula: see text], which is directly related to the fraction saturation of molecular receptors and links the relative longitudinal deformation of the muscle to its [Formula: see text]. We show that such a coefficient can be obtained directly from [Formula: see text] estimates, thus calculating it for the biceps brachii, brachioradialis, and brachialis muscles during isometric elbow flexion torque (τ) ramps. The resulting [Formula: see text] curves were analyzed by conventional characterization methods of receptor-ligand systems to study the dynamical behavior of each muscle. The results showed that, depending on muscle, [Formula: see text] exhibits typical ligand-binding dynamics during joint torque production. Therefore, the above indicates that these different behaviors describe the longitudinal shortening pattern of each muscle during load sharing. As a plausible interpretation, we suggested that this could be related to the binding kinetics of the cross-bridges during their synergistic action as torque increases. Likewise, it shows that elastography could be useful to assess contractile processes at different scales related to the change in the mechanical properties of skeletal muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600237PMC
http://dx.doi.org/10.1038/s41598-023-45037-yDOI Listing

Publication Analysis

Top Keywords

[formula text]
24
skeletal muscle
12
muscle
9
load sharing
8
molecular receptors
8
ligand-binding dynamics
8
muscle [formula
8
[formula
6
text]
6
sharing synergistic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!