Balanced detection based on double beams is widely used to reduce common-mode noises, such as laser intensity fluctuation and irregular wavelength scanning, in absorption spectroscopy. However, employing an additional detector can increase the total system noise due to added non-negligible thermal noise of the detector, particularly with mid-infrared (IR) detectors. Herein, we demonstrate a new optical method based on double-beam modulation (DBM) that uses a single-element detector but keeps the advantage of double-beam balanced detection. The sample and reference path beams were modulated out-of-phase with each other at a high frequency, and their average and difference signals were measured by two lock-in amplifiers and converted into absorbance. DBM was coupled with our previously reported solvent absorption compensation (SAC) method to eliminate the IR absorption contribution of water in aqueous solutions. The DBM-SAC method enabled us to acquire IR absorption spectra of bovine serum albumin solutions down to 0.02 mg/mL. We investigated the noise characteristics of DBM measurements when the wavelength was either fixed or scanned. The results demonstrate that DBM can lower the limit of detection by ten times compared to the non-modulation method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10600177PMC
http://dx.doi.org/10.1038/s41598-023-44740-0DOI Listing

Publication Analysis

Top Keywords

double-beam modulation
8
balanced detection
8
single-detector double-beam
4
modulation high-sensitivity
4
high-sensitivity infrared
4
infrared spectroscopy
4
spectroscopy balanced
4
detection based
4
based double
4
double beams
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!