In the study of phthalocyanine complexes using magnetic circular dichroism (MCD) spectroscopy, the electronic structure of excited states is generally discussed based on the rigid-shift approximation, in which the band profiles for left-handed circularly polarized (lcp) and right-handed circularly polarized (rcp) light are assumed to be the same. This assumption may not necessarily be valid for cases where there are multiple initial states having different geometries. Magnetic circularly polarized luminescence (MCPL) from phthalocyanine complexes can be regarded as an example of such cases, since the two degenerate emission states are split in a magnetic field and can undergo a structural deformation. Here, we investigated an alternative approach, where the lcp and rcp components are independently determined. This method, which we refer to as the direct-separation approach, allows direct determination of the distribution of the two emission states as well as the orbital angular momentum . Using this approach, and the distribution were determined from MCD and MCPL spectra of a series of phthalocyanine complexes. Comparison of the two methods shows that the rigid-shift and the direct-separation approaches give practically equivalent results for the systems under study, but the latter is advantageous for systems where the former is not applicable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chir.23625 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!