Proteolytic enzymes stand out as the most widely employed category utilized in manufacturing industry. A new protease was separated from Planococcus sp.11815 strain and named as nprS-15615 in this research. The gene of this protease has not been reported, and its enzymatic properties have been studied for the first time. To enhance enzyme production, the Planococcus sp. protease gene was expressed in Bacillus licheniformis 2709. The expression level of nprS-15615 was observed under the control of regulatory elements P. nprS-15615 protease activity reached 1186.24±32.87 U/mL after 48 hours of cultivation in shake flasks which was nearly four times the output of the original bacteria (291.38±25.73U/mL). The optimum temperature and pH of the recombinant protease were 30 ℃ and 8.0, respectively.The enzyme exhibited the highest capacity for hydrolyzing casein and demonstrated resilience towards a NaCl concentration of 10.0% (wt/v). Furthermore, in the presence of 0.5% surfactants, the recombinant protease activity can maintain above 75%, and with the existence of 0.5% liquid detergents, there was basically no loss of enzyme activity which indicated that nprS-15615 had good compatibility with surfactants and liquid detergents. In addition, npS-15615 performed well in the washing experiment, and the washing effect at 20 ℃ can be significantly improved by adding crude enzyme solution in the washing process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2323/jgam.2023.09.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!