A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Network pharmacology and experimental validation of Maxing Shigan decoction in the treatment of influenza virus-induced ferroptosis. | LitMetric

Network pharmacology and experimental validation of Maxing Shigan decoction in the treatment of influenza virus-induced ferroptosis.

Chin J Nat Med

College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China. Electronic address:

Published: October 2023

Influenza is an acute viral respiratory infection that has caused high morbidity and mortality worldwide. Influenza A virus (IAV) has been found to activate multiple programmed cell death pathways, including ferroptosis. Ferroptosis is a novel form of programmed cell death in which the accumulation of intracellular iron promotes lipid peroxidation, leading to cell death. However, little is known about how influenza viruses induce ferroptosis in the host cells. In this study, based on network pharmacology, we predicted the mechanism of action of Maxing Shigan decoction (MXSGD) in IAV-induced ferroptosis, and found that this process was related to biological processes, cellular components, molecular function and multiple signaling pathways, where the hypoxia inducible factor-1(HIF-1) signaling pathway plays a significant role. Subsequently, we constructed the mouse lung epithelial (MLE-12) cell model by IAV-infected in vitro cell experiments, and revealed that IAV infection induced cellular ferroptosis that was characterized by mitochondrial damage, increased reactive oxygen species (ROS) release, increased total iron and iron ion contents, decreased expression of ferroptosis marker gene recombinant glutathione peroxidase 4 (GPX4), increased expression of acyl-CoA synthetase long chain family member 4 (ACSL4), and enhanced activation of hypoxia inducible factor-1α (HIF-1α), induced nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF) in the HIF-1 signaling pathway. Treatment with MXSGD effectively reduced intracellular viral load, while reducing ROS, total iron and ferrous ion contents, repairing mitochondrial results and inhibiting the expression of cellular ferroptosis and the HIF-1 signaling pathway. Finally, based on animal experiments, it was found that MXSGD effectively alleviated pulmonary congestion, edema and inflammation in IAV-infected mice, and inhibited the expression of ferroptosis-related protein and the HIF-1 signaling pathway in lung tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1875-5364(23)60457-1DOI Listing

Publication Analysis

Top Keywords

signaling pathway
16
cell death
12
hif-1 signaling
12
network pharmacology
8
maxing shigan
8
shigan decoction
8
ferroptosis
8
programmed cell
8
hypoxia inducible
8
cellular ferroptosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!