Introduction: The aim was to evaluate the stress distributions on dentin and repair materials caused by static force applied to teeth, with cervical external root resorption (CER) after repair with different materials using finite element analysis.

Methods: This study was performed with the 3-dimensional finite element analysis method. Access cavity, root canal cavity dimensions, and supporting tissues other than cementum were modeled in the maxillary central tooth. The CER cavity was created on the labial side of the tooth model. The coronal side of the resorption cavity was restored with composite, and the radicular side with different materials (MTA, Biodentine, BioAggregate, calcium-enriched cement [CEM], glass ionomer cement [GIC], and resin-modified glass ionomer cement [RMGIC]). A static force of 300 N was applied to the palatal surface of the crown at an angle of 135° to the long axis of the tooth. The stress distributions in dentin and repair materials were analyzed.

Results: The highest stress in dentin was seen in the fFigmodel with unrepaired CER. In the models repaired with MTA, GIC, and RMGIC, von Mises stress values in dentin were greater than for repairs with Biodentine, BioAggregate, and CEM materials. The von Mises stress on the repair materials applied to the root were highest for the BioAggregate material. This was followed by CEM, Biodentine, MTA, RMGIC, and GIC materials, respectively.

Conclusion: The repair of CER in the tooth significantly decreased the stress values in dentin. Biodentine, BioAggregate, and CEM absorbed more force and caused less stress to be transmitted to dentin compared to MTA, GIC, and RMGIC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2023.10.007DOI Listing

Publication Analysis

Top Keywords

repair materials
16
biodentine bioaggregate
12
cervical external
8
materials
8
stress distributions
8
distributions dentin
8
dentin repair
8
static force
8
finite element
8
glass ionomer
8

Similar Publications

Osteosarcoma is a rare disease, but it is the most frequent malignant bone tumor. Primary treatment consists of preoperative MAP (methotrexate (MTX), doxorubicin and cisplatin) chemotherapy followed by surgery and adjuvant chemotherapy. Pathological response to preoperative chemotherapy is one of the most important prognostic factors, but molecular biomarkers are lacking.

View Article and Find Full Text PDF

Advances in Research of Hydrogel Microneedle-Based Delivery Systems for Disease Treatment.

Pharmaceutics

December 2024

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.

Microneedles (MNs), composed of multiple micron-scale needle-like structures attached to a base, offer a minimally invasive approach for transdermal drug delivery by penetrating the stratum corneum and delivering therapeutic agents directly to the epidermis or dermis. Hydrogel microneedles (HMNs) stand out among various MN types due to their excellent biocompatibility, high drug-loading capacity, and tunable drug-release properties. This review systematically examines the matrix materials and fabrication methods of HMN systems, highlighting advancements in natural and synthetic polymers, and explores their applications in treating conditions such as wound healing, hair loss, cardiovascular diseases, and cancer.

View Article and Find Full Text PDF

A Novel Polytetrahydrofuran-Based Shape Memory Polyurethane Enhanced by Polyglycolide-Block-Polytetrahydrofuran-Block-Polyglycolide Copolymer.

Polymers (Basel)

December 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

A series of polyurethanes (PU-GT) were prepared using polyglycolide-block-polytetrahydrofuran-block-polyglycolide (PGA-PTHF-PGA), polytetrahydrofuran homopolymer (PTHF), glycerol, and hexamethylene diisocyanate (HDI) by a one-pot synthesis method. The non-isothermal crystallization and subsequent heating curves showed that the PTHF component in these polyurethanes could crystallize in a temperature range of -11.5~2.

View Article and Find Full Text PDF

Synthesis and Characterization of Photocurable Difunctional Monomers for Medical Applications.

Polymers (Basel)

December 2024

Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland.

Photocurable materials offer a rapid transition from a liquid to a solid state, and have recently received great interest in the medical field. However, while dental resins are very popular, only a few materials have been developed for soft tissue repair. This study aims to synthesize a difunctional methacrylate monomer using a dibutyltin dilaurate which is suitable for the photocuring of soft materials.

View Article and Find Full Text PDF

Dynamic Boronic Ester Cross-Linked Polymers with Tunable Properties via Side-Group Engineering.

Polymers (Basel)

December 2024

Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, Shandong Key Laboratory of Advanced Silicone Materials and Technology, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

The development of dynamic covalent materials with repairability, reprocessability, and recyclability is crucial for sustainable development. In this work, we report a new strategy to adjust the thermomechanical properties of boronic ester cross-linked poly(β-hydroxyl amine)s through side-group engineering. By tuning the side groups of the poly(β-hydroxyl amine)s, we have developed self-healable, reprocessable, and shape-programmable materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!