Mitochondria's role as a central hub in cellular metabolism and signaling cascades is well established in the scientific community, being a classic marker of organisms' response to toxicant exposure. Nonetheless, little is known concerning the effects of emerging contaminants, such as microplastics, on mitochondrial metabolism. Micro- and nanoplastics present one of the major problems faced by modern societies. What was once an environmental problem is now recognized as an one-health issue, but little is known concerning microplastic impact on human health. Indeed, only recently, human exposure to microplastics was acknowledged by the World Health Organization, resulting in a growing interest in this research topic. Nonetheless, the mechanisms behind micro- and nanoplastics toxicity are yet to be understood. Animal models, nowadays, are the most appropriate approach to uncovering this knowledge gap. In the present review article, we explore investigations from the last two years using rodent models and reach to find the molecular mechanism behind micro- and nanoplastics toxicity and if mitochondria can act as a target. Although no research article has addressed the effects of mitochondria yet, reports have highlighted molecular and biochemical alterations that could be linked to mitochondrial function. Furthermore, certain studies described the effects of disruptions in mitochondrial metabolism, such as oxidative stress. Micro- and nanoplastics may, directly and indirectly, affect this vital organelle. Investigations concerning this topic should be encouraged once they can bring us closer to understanding the mechanisms underlying these particles' harmful effects on human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tox.2023.153656DOI Listing

Publication Analysis

Top Keywords

micro- nanoplastics
16
nanoplastics toxicity
12
rodent models
8
mitochondrial metabolism
8
human health
8
nanoplastics
5
assessing micro
4
micro nanoplastics
4
toxicity rodent
4
models investigating
4

Similar Publications

The potential health hazards of micro/nanoplastics in food have become a significant concern. This study developed a Polydopamine-modified sodium alginate hydrogel (PMSAH) for removing microplastics in daily drinking water. The hydrogel's performance, characteristics, and kinetics for microplastic removal were systematically evaluated.

View Article and Find Full Text PDF

Interaction of micro and nanoplastics (MNPs) with agricultural stored products and their pests.

Sci Total Environ

January 2025

Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China. Electronic address:

Micro and nanoplastics (MNPs) pose significant environmental concerns due to their potential implications for ecosystems and human health. While previous research has primarily focused on the environmental impacts (aquatic ecosystem, soil health) of MNPs, this review investigates their interactions with agricultural stored products, specifically their effects on stored product pests and grain quality. MNPs can infiltrate grains through various pathways, including atmospheric deposition, plastic residues from cultivation, and pest activity.

View Article and Find Full Text PDF

Effects of Atmospheric Pollutants on Volatile-Mediated Insect Ecosystem Services.

Glob Chang Biol

January 2025

Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, Kuopio, Finland.

Primary and secondary atmospheric pollutants, including carbon monoxide (CO), carbon dioxide (CO), nitrogen oxides (NO), ozone (O), sulphur dioxide (SO) and particulate matter (PM/PM) with associated heavy metals (HMs) and micro- and nanoplastics (MPs/NPs), have the potential to influence and alter interspecific interactions involving insects that are responsible for providing essential ecosystem services (ESs). Given that insects rely on olfactory cues for vital processes such as locating mates, food sources and oviposition sites, volatile organic compounds (VOCs) are of paramount importance in interactions involving insects. While gaseous pollutants reduce the lifespan of individual compounds that act as olfactory cues, gaseous and particulate pollutants can alter their biosynthesis and emission and exert a direct effect on the olfactory system of insects.

View Article and Find Full Text PDF

In contrast to microplastics, studying the interactions of nanoplastics (NPs) with primary producers such as marine microalgae remains challenging. This is attributed to the lack of adequate visualization methods that can distinguish NPs from autofluorescent biological material such as marine algae. The aim of this study was to develop a method for labeling and visualizing nonfluorescent micro- and nanoplastics (MNPs) of various polymer types, shapes, and sizes, in interaction with marine primary producers, which are autofluorescent.

View Article and Find Full Text PDF

Comprehensive Review on Bio-Based Treatments for Polyvinyl Chloride Plastic.

Appl Biochem Biotechnol

January 2025

Sustainable Environmental Processes - Environmental Bioprocesses (SEP-EB), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.

Polyvinyl chloride (PVC) plastics are widespread around the globe, and each year, thousands of tons of PVC end up in the environment in the form of micro-/nanoplastics. Literature has reported extensively on the biodegradation of its PVC additives/plasticizers; however, bio-based treatment approaches for its polymers have been scanty. The current review has discussed elaborately all possible PVC degradation processes and the toxicity challenges faced during its mitigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!