A review on life cycle environmental impacts of emerging solar cells.

Sci Total Environ

Department of Engineering, University of Palermo, Viale delle Scienze Ed.9, 90128 Palermo, Italy. Electronic address:

Published: January 2024

The development of solar technologies requires increased efficiency in converting solar radiation to energy, as well as innovative materials and structure to go beyond the conventional power conversion ratio. In line with these innovations, there are concerns about greenhouse gas emissions of the solar cells, materials for the solar technologies and other relevant environmental impacts of the manufacturing processes. This review is conducted on life cycle assessments of solar cells, considering the climate change and natural resource shortage context. It is identified that the majority of existing life cycle assessments on solar cells take into account four typical environmental impacts: energy consumption, greenhouse gas emissions, material depletion, and toxicity. Though the diverse methodological aspects make it difficult to directly compare these environmental impacts among various types of solar cells, the obtained results hinder that emerging solar cells such as perovskite solar cells or tandem solar cells are likely to have better environmental profiles than conventional silicon based and thin film solar cells, in terms of energy consumption, greenhouse gas emissions and material consumption. However, the emerging solar cells may utilize toxic materials in which their eco-toxicity and human toxicity should be further considered during the design of the technologies. Moreover, it is identified that the energy and environmental hotspot lies in the manufacturing process, regardless of impact indicators and types of solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168019DOI Listing

Publication Analysis

Top Keywords

solar cells
44
environmental impacts
16
solar
14
life cycle
12
emerging solar
12
greenhouse gas
12
gas emissions
12
cells
11
solar technologies
8
cycle assessments
8

Similar Publications

Why SbSe/CdS Interface Produces Higher Power Conversion Efficiency.

J Phys Chem Lett

January 2025

College of Physics Science and Technology, Hebei University, Baoding 071002, China.

Developing the Cd-free electron transport layer (ETL) is a crucial subject in the field of antimony selenide (SbSe) solar cells. At present, the power conversion efficiency (PCE) of the Cd-free SbSe solar cell is still substantially lower than that of CdS-based devices. It is significant to reveal the electron transfer features in SbSe/CdS heterojunction and SbSe/Cd-free ETL heterojunction for development of a Cd-free SbSe solar cell with high PCE.

View Article and Find Full Text PDF

Improved Conductivity of 2D Perovskite Capping Layer for Realizing High-Performance 3D/2D Heterostructured Hole Transport Layer-Free Perovskite Photovoltaics.

ACS Nano

January 2025

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.

Perovskite solar cells (PSCs) have emerged as low-cost photovoltaic representatives. Constructing three-dimensional (3D)/two-dimensional (2D) perovskite heterostructures has been shown to effectively enhance the efficiency and stability of PSCs. However, further enhancement of device performance is still largely limited by inferior conductivity of the 2D perovskite capping layer and its mismatched energy level with the 3D perovskite layer.

View Article and Find Full Text PDF

Long-term dynamics of placozoan culture: emerging models for population and space biology.

Front Cell Dev Biol

January 2025

Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.

As the simplest free-living animal, (Placozoa) is emerging as a powerful paradigm to decipher molecular and cellular bases of behavior, enabling integrative studies at all levels of biological organization in the context of metazoan evolution and parallel origins of neural organization. However, the progress in this direction also depends on the ability to maintain a long-term culture of placozoans. Here, we report the dynamic of cultures over 11 years of observations from a starting clonal line, including 7 years of culturing under antibiotic (ampicillin) treatment.

View Article and Find Full Text PDF

Advances in integrated power supplies for self-powered bioelectronic devices.

Nanoscale

January 2025

Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.

Bioelectronic devices with medical functions have attracted widespread attention in recent years. Power supplies are crucial components in these devices, which ensure their stable operation. Biomedical devices that utilize external power supplies and extended electrical wires limit patient mobility and increase the risk of discomfort and infection.

View Article and Find Full Text PDF

Dual-Asymmetric Solid Additive Enables Eco-friendly All-Polymer Solar Cells with Over 19% Efficiency and Excellent Stability.

Angew Chem Int Ed Engl

January 2025

Guangzhou University, Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006 P, 510006, Guangzhou, CHINA.

The optimization of morphology in all-polymer solar cells (all-PSCs) often relies on the use of solvent additives. However, their tendency to remain trapped in the device due to high boiling points leads to performance degradation over time. In this study, we introduce a novel approach involving the design and synthesis of one dual-asymmetric solid additive featuring mono-brominated-asymmetric dithienothiophene (SL-1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!