Life cycle assessment of biostimulant production from algal biomass grown on piggery wastewater.

Sci Total Environ

Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

Published: January 2024

AI Article Synopsis

  • * The study employs the IMPACT 2002+ method for life cycle assessment, comparing two harvesting technologies (membrane vs. centrifuge) and two CO2 capture methods (chemical absorption vs. membrane separation).
  • * Results indicate that using membranes for both harvesting and CO2 capture significantly lowers environmental impacts, with the membrane scenario showing a 30% reduction in various impact categories compared to centrifugation, marking it as the more environmentally viable option.

Article Abstract

Piggery wastewater has become a large source of pollution with high concentrations of nutrients, that must be managed and properly treated to increase its environmental viability. Currently, the use of microalgae for treating this type of wastewater has emerged as a sustainable process with several benefits, including nutrient recovery to produce valuable products such as biostimulants, and CO capture from flue gases. However, the biostimulant production from biomass grown on piggery wastewater also has environmental impacts that need to be studied to identify possible hotspots. This work presents the life cycle assessment by IMPACT 2002+ method of the production of microalgae-based biostimulants, comparing two different harvesting technologies (membrane in scenario 1 and centrifuge in scenario 2) and two different technologies for on-site CO capture from flue gases (chemical absorption and membrane separation). The use of membranes for harvesting (scenario 1) reduced the environmental impact in all categories (human health, ecosystem quality, climate change, and resources) by 30 % on average, compared to centrifuge (scenario 2). Also, membranes for CO capture allowed to decrease environmental impacts by 16 %, with the largest reduction in the resource category (∼33 %). Thus, the process with the best environmental viability was achieved in scenario 1 using membranes for CO capture, with a value of 217 kg CO eq/FU. In scenario 2 with centrifugation, the high contribution of the cultivation sub-unit in all impacts was highlighted (>75 %), while in scenario 1 the production sub-unit also had moderate contribution in the human health (∼35 %) and climate change (∼30 %) categories due to the lower concentration and high flow rates. These results were obtained under a worst-case situation with pilot scale optimized parameters, with limited data which would have to be further optimized at industrial-scale implementation. The sensitivity analysis showed a little influence of the parameters that contribute the most to the impacts, except for the transportation of the piggery wastewater to the processing plant in scenario 2. Because of the relevant impact of biostimulant transportation in scenario 1, centrifugation becomes more favourable when transportation distance is longer than 321 km.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168083DOI Listing

Publication Analysis

Top Keywords

piggery wastewater
16
scenario
9
life cycle
8
cycle assessment
8
biostimulant production
8
biomass grown
8
grown piggery
8
environmental viability
8
capture flue
8
flue gases
8

Similar Publications

Piggery wastewater treatment by solar photo-Fenton coupled with microalgae production.

Water Res

November 2024

LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, Lisbon 1649-038, Portugal; GreenCoLab, Green Ocean Technologies and Products Collaborative Laboratory, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal.

Pig farming generates highly polluted wastewater that requires effective treatment to minimize environmental damage. Microalgae can recover nutrients from piggery wastewater (PWW), but excessive nutrient and turbidity levels inhibit their growth. Solar photo-Fenton (PF) offer a sustainable and cost-effective pretreatment to allow microalgal growth for further PWW treatment.

View Article and Find Full Text PDF

Bioprocess to produce biostimulants/biofertilizers based on microalgae grown using piggery wastewater as nutrient source.

Bioresour Technol

December 2024

LNEG, National Laboratory of Energy and Geology I.P., Bioenergy and Biorefineries Unit, Estrada do Paço do Lumiar 22, 1649-038 Lisbon, Portugal; GreenCoLab, Green Ocean Technologies and Products Collaborative Laboratory, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.

Article Synopsis
  • The study investigated two methods—high-pressure homogenization (HPH) at 100 and 1200 bar, and enzymatic hydrolysis (EH)—to extract biostimulants from Tetradesmus obliquus, a microalga grown in piggery wastewater.
  • The extracts were tested on garden cress, mung beans, and cucumbers to assess their growth-promoting effects, with untreated microalgal cultures showing the best germination rates and cytokinin-like activity.
  • High-pressure homogenization at 1200 bar and enzymatic hydrolysis yielded significant increases in auxin-like activity for mung beans and cucumbers, suggesting that the extracted biomass could be beneficial for sustainable agricultural applications.
View Article and Find Full Text PDF

Synergistic treatment of digested wastewater with high ammonia nitrogen concentration using straw and microalgae.

Bioresour Technol

November 2024

Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.

Microalgae as a promising approach for wastewater treatment, has challenges in directly treating digested piggery wastewater (DPW) with high ammonia nitrogen (NH-N) concentration. To improve the performance of microalgae in DPW treatment, straw was employed as a substrate to form a straw-microalgae biofilm. The results demonstrated that the straw-microalgae biofilm achieved the highest NH-N removal rate of 193.

View Article and Find Full Text PDF

Potentially toxic elements (PTE) pollution in water bodies is an emerging problem in recent decades due to uncontrolled discharges from human activities. Copper, zinc, arsenic, cadmium, lead, mercury, and uranium are considered potentially toxic and carcinogenic elements that threaten human health. Microalgae-based technologies for the wastewater treatment have gained importance in recent years due to their biomass high growth rates and effectiveness.

View Article and Find Full Text PDF

The co-circulation of mosquito-borne Japanese encephalitis virus (JEV), Murray Valley encephalitis virus (MVEV), and West Nile virus (WNV) has impacted human and animal health in multiple countries worldwide. To facilitate early warnings and surveillance of the presence of these viral infectious agents in the environment, a triplex reverse transcription-quantitative PCR (RT-qPCR) was developed for simultaneous quantification of JEV, MVEV, and WNV in potential hotspots such as piggery and urban wastewater and environmental water samples. The performance of the developed triplex RT-qPCR assay was compared with that of simplex counterparts, all using the same primer and probe sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!