Background: We previously developed a site-specific transvascular drug delivery system (DDS) based on photomechanical waves (PMWs) or laser-induced stress/shock waves (LISWs). In this study, we investigated the validity of this method to deliver a clinical photosensitizer, talaporfin sodium (TS), to subcutaneous tumors in mice and to enhance the efficacy of photodynamic therapy (PDT).
Methods: TS solution (2.5 mg/kg) was intravenously injected into mice. Immediately thereafter, PMWs were applied to the tumor by irradiating a laser target with a Q-switched ruby laser pulse (0.8 J/cm). Five hours after TS administration, some tumors were excised to evaluate the depth distribution of the delivered TS under a fluorescence microscope. Other tumors were subjected to PDT by irradiating the tissues with a 665 nm continuous-wave laser diode (75 mW/cm, 667 s) at this timepoint. The effects of PDT were evaluated on the basis of the two primary therapeutic mechanisms of TS-mediated PDT: i) damage to tumor cells and ii) damage to endothelial cells of tumor vessels, i.e., the vascular shutdown effect on tumors.
Results: PMW application significantly increased the accumulation of TS in the tumor parenchyma but not in the tumor vessel walls; the endothelial cell junctions of tumor vessels should be the route of TS delivery enhanced by PMWs. Thus, as a result of PMW application followed by PDT, while the vascular shutdown effect on the tumors was not enhanced, direct damage to the tumor cells was increased, resulting in significant tumor growth retardation without body weight loss for 7 days after treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pdpdt.2023.103861 | DOI Listing |
Neurosurgery
November 2024
Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan.
Cancer Drug Resist
September 2024
Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
Biomedicines
September 2024
Department of Neurosurgery, Tokyo Medical University, Tokyo 160-0023, Japan.
This preclinical study was conducted to investigate the efficacy of interstitial PDT (i-PDT) for malignant gliomas arising deep within the brain, which are difficult to remove. C6 glioma cells were implanted into the basal ganglia of rats, and 3 weeks later, the second-generation photosensitizer talaporfin sodium (TPS) was administered intraperitoneally. Ninety minutes after administration, a prototype fine plastic optical fiber was punctured into the tumor tissue, and semiconductor laser light was irradiated into the tumor from a 2-mm cylindrical light-emitting source under various conditions.
View Article and Find Full Text PDFACS Appl Bio Mater
October 2024
Graduate School of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.
Porphyrins have emerged as highly effective photosensitizers in the field of photodynamic therapy (PDT) because of their high singlet oxygen generation efficiency. However, most porphyrin derivatives do not have adequate water solubility and cell membrane permeability suitable for use in PDT. In addition, they frequently suffer from low durability under photoirradiation.
View Article and Find Full Text PDFWorld Neurosurg
October 2024
Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan. Electronic address:
Background: Intraoperative photodynamic diagnosis (PDD) using 5-aminolevulinic acid (5-ALA) is a widely adopted technique to enhance the extent of resection during high-grade glioma (HGG) surgery. Recent updates to the package insert for 5-ALA in Japan now allow its use in combination with drugs that may induce photosensitivity, such as talaporfin sodium (TS). TS is employed in intraoperative photodynamic therapy (PDT) and has been shown to improve overall survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!