Transcriptional regulation of IAG by dsx and foxl-2 in mud crab (Scylla paramamosain).

Gen Comp Endocrinol

Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China. Electronic address:

Published: January 2024

AI Article Synopsis

Article Abstract

Scylla paramamosain is an important cultured crab species on the southeast coast of China. However, the molecular regulation mechanism of its gonadal development still has not been thoroughly studied. Dsx (doublesex) and foxl-2 (forkhead transcription factor gene 2) are important transcription factors involved in gonadal development. So far, studies on the functions of dsx and foxl-2 in crustaceans are very limited. Insulin-like androgenic gland hormone (IAG) is an effector molecule that regulates the differentiation, development and sex maintenance of testes in crustaceans. In this study, the promoter region of Sp-IAG was predicted, and several potential binding sites of dsx and foxl-2 were found. Site-directed mutagenesis was performed on the predicted potential binding sites, and their promoter activity was analyzed. The results showed that there was a dsx and a foxl-2 binding site, respectively, that could regulate the expression of Sp-IAG. In order to verify the regulatory effect of these two transcription factors on Sp-IAG, we constructed the expression plasmids of dsx and foxl-2 and co-transfected them into HEK293T cell lines with the promoter of Sp-IAG, respectively. The results showed that dsx could significantly promote the expression of Sp-IAG, while foxl-2 could inhibit its expression substantially. Then we carried out in vivo RNA interference experiment on mud crabs. The expression of dsx and foxl-2 in crabs was interfered respectively. The results of qRT-PCR showed that the expression of Sp-IAG was significantly inhibited after interfering with dsx, while significantly increased after interfering with foxl-2, which was consistent with the cell experiment. In conclusion, dsx and foxl-2 transcription factors play opposite roles in regulating the expression of Sp-IAG.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygcen.2023.114396DOI Listing

Publication Analysis

Top Keywords

dsx foxl-2
28
expression sp-iag
16
transcription factors
12
dsx
10
foxl-2
10
scylla paramamosain
8
gonadal development
8
predicted potential
8
potential binding
8
binding sites
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!