A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Substantial Antiviral Potential of Deoxyribozymes Fixed on Anatase Nanoparticles Against Influenza A Viruses in vitro and in vivo. | LitMetric

Influenza A viruses (IAV) are a high threat to humanity because of a lack of proper effective antiviral drugs and resistance of viruses to existing vaccines. We describe the sufficient anti-IAV effect of Ans/PL-Dz nanocomposites that contain deoxyribozymes (Dz) immobilized on anatase TiO nanoparticles (Ans) through polylysine linker (PL). The Dz-containing nanocomposites appear to be more efficient than the Ans/PL-ODN nanocomposites that contain common oligodeoxyribonucleotides (ODN) targeted to the same RNA regions of the viral genome. The simultaneous use of nanocomposites that contain Dz and ODN, which are targeted to different sites of viral RNA provides a higher overall effect than the independent action of each of them (synergism). The inhibition of IAV with the proposed nanocomposites was shown to be effective, sequence-specific, and dose-dependent. The most efficient Ans/PL-Dz nanocomposite exhibited a high antiviral effect in vivo on mice models. The efficiency of IAV inhibition with this nanocomposite in vitro and in vivo is higher than that for the approved antiflu drug oseltamivir. The results open the prospect of creating a unique antiviral agent suitable for IAV suppression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2023.10.028DOI Listing

Publication Analysis

Top Keywords

influenza viruses
8
vitro vivo
8
odn targeted
8
nanocomposites
5
substantial antiviral
4
antiviral potential
4
potential deoxyribozymes
4
deoxyribozymes fixed
4
fixed anatase
4
anatase nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!