The augmentation of biogas production can be achieved by incorporating metallic nanoparticles as additives within anaerobic digestion. The objective of this current study is to examine the synthesis of Fe-Ni-Zn and Fe-Co-Zn trimetallic nanoparticles using the co-precipitation technique and assess its impact on anaerobic digestion using palm oil mill effluent (POME) as carbon source. The structural morphology and size of the synthesised trimetallic nanoparticles were analysed using a range of characterization techniques, such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX) . The average size of Fe-Ni-Zn and Fe-Co-Zn were 19-25.5 nm and 19.1-30.5 nm respectively. Further, investigation focused on examining the diverse concentrations of trimetallic nanoparticles, ranging from 0 to 50 mgL. The biogas production increased by 55.55% and 60.11% with Fe-Ni-Zn and Fe-Co-Zn trimetallic nanoparticles at 40 mgL and 20 mgL, respectively. Moreover, the lowest biogas of 11.11% and 38.11% were found with 10 mgL of Fe-Ni-Zn and Fe-Co-Zn trimetallic nanoparticles. The findings of this study indicated that the trimetallic nanoparticles exhibited interactions with anaerobes, thereby enhancing the degradation process of palm oil mill effluent (POME) and biogas production. The study underscores the potential efficacy of trimetallic nanoparticles as a viable supplement for the promotion of sustainable biogas generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140512 | DOI Listing |
ACS Omega
November 2024
Nano and Functional Materials Lab (NFML), Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
Trimetallic nanoparticles (TMNPs) have opened a broad spectrum of applications with a new class of materialistic combinations in several fields from electronics to medicinal and environmental applications. In this work, we report the synthesis and characterization of Ni/Cu/Ag TMNPs using the polyol method and their nonlinear optical (NLO) studies. A broad surface plasmon resonance (SPR) peak at 443 nm evidences the formation of the Ni/Cu/Ag TMNPs with a peak shift compared to their mono- or bimetallic counterparts.
View Article and Find Full Text PDFRSC Adv
November 2024
Botany and Microbiology Department, Faculty of Science, Al-Azhar University Cairo 11884 Egypt
An advanced hybrid nanocomposite based on different metals (copper, cobalt, and chromium) decorated with sustainable polysaccharides (gelatin, GLN, and hydroxyethyl cellulose, HEC) was developed. The composite reflects several advantages including a controlled particle size, particle size distribution, along with promising antimicrobial and anticancer activities. Topographical and elemental analyses were carried out using field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and energy dispersive X-ray analysis (EDX), demonstrating the formation of trimetallic nanoparticles (NPs) possessing domain sizes of 169 nm and 102 nm assigned to the free nanocomposite (Fcomp) and loaded nanocomposite (Lcomp), respectively.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Universidad Nacional Autónoma de México/Centro de Nanociencias y Nanotecnología, Carr. Tijuana-Ensenada km107, Ensenada, 22860, Baja California, Mexico.
Nanoscale
December 2024
HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest, Hungary.
The performance of functional nanocatalysts can be extended by integrating multiple types of metals into well-designed nanoparticles. A porous multimetallic shell grown around high-quality monometallic seeds significantly enhances the availability of active sites. Here, tetrametallic core/shell nanoparticles (Au@mPdPtIr) featuring micro- and mesoporous shells are synthesized with strict control over the overall particle morphology.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!