Biochar has been investigated as a potential soil amendment for increasing P sorption to soils. Several studies of shown that coating biochar with Fe oxides can increase the amount of P sorbed to the biochar, yet little is known about the kinetics of P sorption to soils amended with Fe-coated biochar. In this study, the kinetics of P sorption are measured in four soils with contrasting surface properties and textures. In addition, a wood-based biochar, both unmodified (BC) and modified by chemical precipitation of Fe oxides (BC), was added to these four soils at a rate of 5% (w/w). P sorption to each soil with and without the unmodified or Fe-coated biochar was measured at incubation times ranging from 1 to 314 h. The data were fit using five different kinetic models to determine if the addition of the BC or BC significantly affected the amount of P sorption and the kinetic behavior of P sorption to the biochar-amended soils. Results showed that amending with BC had minimal impact on P sorption to the four soils, whereas the impact of the BC on P sorption varied depending on soil. In the low P sorbing soil, the BC nearly doubled the amount of P sorbed whereas in the high P sorbing soil, addition of the BC resulted in less-than-expected increases in P sorption. For each biochar and soil treatment, the same kinetic model provided the best fit to the observed sorption over time. In two soils, the kinetic model parameters were significantly different following the addition of the BC whereas the model parameters for all four soils were significantly different following addition of BC. This study provides new insights into P sorption kinetics to biochar-amended soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140523 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!