Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Primary ecological succession is imperative for tailing vegetation, driven notably by microbes that enhance tailing nutrient status. Yet, the roles of abundant and rare taxa in tailing primary succession remain underexplored. This study investigates these subcommunities across three succession stages (i.e., original tailing, biological crusts, grasslands). Throughout primary succession, alpha diversity and functional gene abundances of the rare taxa (RT) group consistently rise from bare tailings to grasslands. Conversely, the abundant taxa (AT) group displays an opposing trend. Intriguingly, employing co-occurrence networks, keystone taxa, mantel tests, similarity percentage analysis, and structural equation model, the study uncovers that RT wields a more pivotal role than AT in driving tailing primary succession. Community assembly analysis reveals stochastic control of AT and deterministic control of RT. Additionally, primary succession reinforces stochastic processes in AT, while RT's deterministic process remains unaffected. By unveiling these dynamics, the research enriches our understanding of primary ecological succession in tailings. Recognition of unique diversity patterns and community assembly mechanisms for rare and abundant subcommunities advances tailing ecosystem comprehension and informs ecological restoration strategies. This study thus contributes valuable insights to the complex interplay of microbial taxa during tailing primary succession.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.132807 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!