Colon cancer is a common and deadly malignancy of the gastrointestinal tract. Targeting proteins that inhibit tumor proliferation could lead to innovative treatment strategies for this disease. Demethylzeylasteral, extracted naturally from Tripterygium wilfordii Hook. f., demonstrates incredible anti-colon cancer activity. However, the molecular mechanism behind this requires further investigation. This study aims to identify crucial targets and mechanisms of demethylzeylasteral in treating colon cancer, making it a promising candidate for anti-tumor therapy. Through gene knockout, overexpression techniques, and double Luciferase experiments, we confirmed that demethylzeylasteral reduces S100A11 expression in HT29 cells and in vivo tumor models to anti-colon cancer. By conducting Surface Plasmon Resonance, immunofluorescence staining, and confocal laser microscopy observations, we verified the direct interaction between demethylzeylasteral and S100A11, and explored the impact of S100A11's subcellular localization on cell proliferation. Demethylzeylasteral inhibited S100A11 expression and exhibited anti-cancer activity in both in vitro and in vivo colon cancer models. Conversely, overexpression of S100A11 hindered apoptosis induced by demethylzeylasteral. Additionally, we found that knockdown or overexpression of NF-κB respectively decreased or increased S100A11 expression, subsequently affecting cell proliferation. The dual Luciferase reporting experiment revealed that NF-κB is an upstream transcription factor regulating S100A11 expression. And Surface plasmon resonance confirmed that S100A11 can directly interact with demethylzeylasteral, this interaction limited the transport of S100A11 from the cytoplasm to nucleus, attenuation S100A11 mediated cell proliferation effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.115725DOI Listing

Publication Analysis

Top Keywords

colon cancer
16
s100a11 expression
16
cell proliferation
12
s100a11
10
demethylzeylasteral
8
anti-colon cancer
8
surface plasmon
8
plasmon resonance
8
cancer
6
inhibiting nf-κb-s100a11
4

Similar Publications

Colon cancer development may be initiated by multiple factors, including chronic inflammation, genetic disposition, and gut dysbiosis. The loss of beneficial bacteria and increased abundance of detrimental microbes exacerbates disease progression. () is a human gut microbe, and its colon colonization is enhanced by a seaweed-supplemented diet.

View Article and Find Full Text PDF

The colon possesses a unique physiological environment among human organs, where there is a highly viscous body fluid layer called the mucus layer above colonic epithelial cells. Dysfunction of the mucus layer not only contributes to the occurrence of colorectal cancer (CRC) but also plays an important role in the development of chemoresistance in CRC. Although viscosity is an essential property of the mucus layer, it remains elusive how viscosity affects chemoresistance in colon cancer cells.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is among the most common cancer types for both sexes. Tripartite motif 36 (TRIM36) has been reported to be aberrantly expressed in several cancer types, suggesting its involvement in cancer progression. However, the role of TRIM36 in the colorectal carcinogenesis remain unknown.

View Article and Find Full Text PDF

Regulation of protein production in response to physiological signals is achieved through precise control of Eukaryotic Elongation Factor 2 (eEF2), whose distinct translocase function is crucial for cell survival. Phosphorylation of eEF2 at its Thr56 (T56) residue inactivates this function in translation. Using genetically modified paralogue of a colon cancer cell line, HCT116 which carries a point mutation at Ser595-to-Alanine in the eEF2 gene we were able to create a constitutively active form of eEF2.

View Article and Find Full Text PDF

This multicenter study explored the survival benefits of upfront primary tumor resection (PTR) followed by first-line cetuximab plus chemotherapy in real-world patients with wild-type metastatic colorectal cancer (mCRC). Treatment options for mCRC include chemotherapy, targeted therapy, immunotherapy, and surgery. The efficacy of upfront PTR in managing mCRC remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!