Chloroplast morphology changes during immunity, giving rise to tubule-like structures known as stromules. Stromules extend along microtubules and anchor to actin filaments along nuclei to promote perinuclear chloroplast clustering. This facilitates the transport of defense molecules/proteins from chloroplasts to the nucleus. Evidence for a direct role for stromules in immunity is lacking since, currently, there are no known genes that regulate stromule biogenesis. We show that a calponin homology (CH) domain containing kinesin, KIS1 (kinesin required for inducing stromules 1), is required for stromule formation during TNL [TIR (Toll/Interleukin-1 receptor)-type nucleotide-binding leucine-rich repeat]-immune receptor-mediated immunity. Furthermore, KIS1 is required for TNL-mediated immunity to bacterial and viral pathogens. The microtubule-binding motor domain of KIS1 is required for stromule formation while the actin-binding, CH domain is required for perinuclear chloroplast clustering. We show that KIS1 functions through early immune signaling components, EDS1 and PAD4, with salicylic acid-induced stromules requiring KIS1. Thus, KIS1 represents a player in stromule biogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599616 | PMC |
http://dx.doi.org/10.1126/sciadv.adi7407 | DOI Listing |
New Phytol
December 2024
Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA.
Chloroplast Unusual Positioning 1 (CHUP1) plays an important role in the chloroplast avoidance and accumulation responses in mesophyll cells. In epidermal cells, prior research showed silencing CHUP1-induced chloroplast stromules and amplified effector-triggered immunity (ETI); however, the underlying mechanisms remain largely unknown. CHUP1 has a dual function in anchoring chloroplasts and recruiting chloroplast-associated actin (cp-actin) filaments for blue light-induced movement.
View Article and Find Full Text PDFJ Exp Bot
October 2024
Laboratory of Plant Development & Interactions, Department of Molecular & Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G2W1, Canada.
Peri-nuclear clustering (PNC) of chloroplasts has largely been described in senescent and pathogen- or reactive oxygen species-stressed cells. Stromules, tubular plastid extensions, are also observed under similar conditions. Coincident observations of PNC and stromules associate the two phenomena in facilitating retrograde signaling between chloroplasts and the nucleus.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2024
Department of Environmental Biology, Sapienza University of Rome, Italy.
In land plants plastid type differentiation occurs concomitantly with cellular differentiation and the transition from one type to another is under developmental and environmental control. Plastid dynamism is based on a bilateral communication between plastids and nucleus through anterograde and retrograde signaling. Signaling occurs through the interaction with specific phytohormones (abscisic acid, strigolactones, jasmonates, gibberellins, brassinosteroids, ethylene, salicylic acid, cytokinin and auxin).
View Article and Find Full Text PDFAnn Bot
October 2024
Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, 350002 Fuzhou, China.
Plant senescence is an integrated programme of plant development that aims to remobilize nutrients and energy from senescing tissues to developing organs under developmental and stress-induced conditions. Upstream in the regulatory network, a small family of single-stranded DNA/RNA-binding proteins known as WHIRLYs occupy a central node, acting at multiple regulatory levels and via trans-localization between the nucleus and organelles. In this review, we summarize the current progress on the role of WHIRLY members in plant development and stress-induced senescence.
View Article and Find Full Text PDFPlant Physiol
September 2024
Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan.
Plastids in vascular plants have various differentiated forms, among which amyloplasts are crucial for starch storage and plant productivity. Despite the vast knowledge of the binary-fission mode of chloroplast division, our understanding of the replication of non-photosynthetic plastids, including amyloplasts, remains limited. Recent studies have suggested the involvement of stromules (stroma-filled tubules) in plastid replication when the division apparatus is faulty.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!