Wearable smart glasses are an emerging technology gaining popularity in the assistive technologies industry. Smart glasses aids typically leverage computer vision and other sensory information to translate the wearer's surrounding into computer-synthesized speech. In this work, we explored the potential of a new technique known as "acoustic touch" to provide a wearable spatial audio solution for assisting people who are blind in finding objects. In contrast to traditional systems, this technique uses smart glasses to sonify objects into distinct sound auditory icons when the object enters the device's field of view. We developed a wearable Foveated Audio Device to study the efficacy and usability of using acoustic touch to search, memorize, and reach items. Our evaluation study involved 14 participants, 7 blind or low-visioned and 7 blindfolded sighted (as a control group) participants. We compared the wearable device to two idealized conditions, a verbal clock face description and a sequential audio presentation through external speakers. We found that the wearable device can effectively aid the recognition and reaching of an object. We also observed that the device does not significantly increase the user's cognitive workload. These promising results suggest that acoustic touch can provide a wearable and effective method of sensory augmentation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599575 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290431 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!