Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diabetes mellitus type 2 is increasingly being called a modern preventable pandemic, as even with excellent available treatments, the rate of complications of diabetes is rapidly increasing. Predicting diabetes and identifying it in its early stages could make it easier to prevent, allowing enough time to implement therapies before it gets out of control. Leveraging longitudinal electronic medical record (EMR) data with deep learning has great potential for diabetes prediction. This paper examines the predictive competency of deep learning models in contrast to state-of-the-art machine learning models to incorporate the time dimension of risk. The proposed research investigates a variety of deep learning models and features for predicting diabetes. Model performance was appraised and compared in relation to predominant features, risk factors, training data density and visit history. The framework was implemented on the longitudinal EMR records of over 19K patients extracted from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN). Empirical findings demonstrate that deep learning models consistently outperform other state-of-the-art competitors with prediction accuracy of above 91%, without overfitting. Fasting blood sugar, hemoglobin A1c and body mass index are the key predictors of future onset of diabetes. Overweight, middle aged patients and patients with hypertension are more vulnerable to developing diabetes, consistent with what is already known. Model performance improves as training data density or the visit history of a patient increases. This study confirms the ability of the LSTM deep learning model to incorporate the time dimension of risk in its predictive capabilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599553 | PMC |
http://dx.doi.org/10.1371/journal.pdig.0000354 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!