In this study, we characterize the distribution of airborne viruses (influenza A/B) in hospital rooms of patients with confirmed infections. Concurrently, we monitored fine particulate matter (PM2.5 & PM10) and several physical parameters including the room air exchange rate, temperature, and relative humidity to identify corresponding correlations with virus transport and removal determinants. The results continue to raise concerns about indoor air quality (IAQ) in healthcare facilities and the potential exposure of patients, staff and visitors to aerosolized viruses as well as elevated indoor PM levels caused by outdoor sources and/or re-suspension of settled particles by indoor activities. The influenza A virus was detected in 42% of 33 monitored rooms, with viruses detectible up to 1.5 m away from the infected patient. Active coughing was a statistically significant variable that contributed to a higher positive rate of virus detection in the collected air samples. Viral load across patient rooms ranged between 222 and 5,760 copies/m3, with a mean of 820 copies/m3. Measured PM2.5 and PM10 levels exceeded IAQ daily exposure guidelines in most monitored rooms. Statistical and numerical analyses showed that dispersion was the dominant viral removal pathway followed by settling. Changes in the relative humidity and the room's temperature were had a significant impact on the viral load removal. In closure, we highlight the need for an integrated approach to control determinants of IAQ in patients' rooms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599543 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290124 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!