Immersive analytics has emerged as a promising research area, leveraging advances in immersive display technologies and techniques, such as virtual and augmented reality, to facilitate data exploration and decision-making. This paper presents a systematic literature review of 73 studies published between 2013-2022 on immersive analytics systems and visualizations, aiming to identify and categorize the primary dimensions influencing their design. We identified five key dimensions: Academic Theory and Contribution, Immersive Technology, Data, Spatial Presentation, and Visual Presentation. Academic Theory and Contribution assess the motivations behind the works and their theoretical frameworks. Immersive Technology examines the display and input modalities, while Data dimension focuses on dataset types and generation. Spatial Presentation discusses the environment, space, embodiment, and collaboration aspects in IA, and Visual Presentation explores the visual elements, facet and position, and manipulation of views. By examining each dimension individually and cross-referencing them, this review uncovers trends and relationships that help inform the design of immersive systems visualizations. This analysis provides valuable insights for researchers and practitioners, offering guidance in designing future immersive analytics systems and shaping the trajectory of this rapidly evolving field.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2023.3327368DOI Listing

Publication Analysis

Top Keywords

immersive analytics
16
immersive
8
analytics systems
8
systems visualizations
8
academic theory
8
theory contribution
8
immersive technology
8
spatial presentation
8
visual presentation
8
unraveling design
4

Similar Publications

Multifunctional SERS Chip for Biological Application Realized by Double Fano Resonance.

Nanomaterials (Basel)

December 2024

Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China.

The in situ and label-free detection of molecular information in biological cells has always been a challenging problem due to the weak Raman signal of biological molecules. The use of various resonance nanostructures has significantly advanced Surface-enhanced Raman spectroscopy (SERS) in signal enhancement in recent years. However, biological cells are often immersed in different formulations of culture medium with varying refractive indexes and are highly sensitive to the temperature of the microenvironment.

View Article and Find Full Text PDF

Filling the microchannel with negatively charged hydrogel can exhibit microsacle ion current rectification (ICR) behavior, which is attributed to the space negative charge and structural asymmetry of hydrogel. In this study, this character had been applied to develop a trypsin sensor for the first time. A hydrogel synthesized with bovine serum albumin (BSA) and glyoxal (BSAG hydrogel) was filled at the tip of microchannel firstly.

View Article and Find Full Text PDF

Hyperballistic transport in dense systems of charged particles under ac electric fields.

Phys Rev E

November 2024

Department of Physics "A. Pontremoli, " University of Milan, via Celoria 16, 20133 Milan, Italy.

The Langevin equation is ubiquitously employed to numerically simulate plasmas, colloids, and electrolytes. However, the usual assumption of white noise becomes untenable when the system is subject to an external ac electric field. This is because the charged particles in the system, which provide the thermal bath for the particle transport, become themselves responsive to the ac field and the thermal noise is field dependent and non-Markovian.

View Article and Find Full Text PDF

Accurate assessment of the aging state of transformer oil-barrier insulation is crucial for ensuring the safe and reliable operation of power systems. This study presents the development of indoor accelerated thermal aging experiments to simulate the degradation of oil-immersed barrier insulation within transformers. A series of samples reflecting various aging states was obtained and categorized into six distinct groups.

View Article and Find Full Text PDF

An Electrochemical Sensor for Detection of Lead (II) Ions Using Biochar of Spent Coffee Grounds Modified by TiO Nanoparticles.

Molecules

December 2024

International Union Laboratory of China and Malaysia for Quality Monitoring and Evaluation of Agricultural Products in Yunnan, School of Biology and Chemistry, Pu'er University, Pu'er 665000, China.

Toxic heavy metal ions, such as lead ions, significantly threaten human health and the environment. This work introduces a novel method for the simple and sensitive detection of lead ions based on biochar-loaded titanium dioxide nanoparticles (BC@TiONPs) nanocomposites. Eco-friendly biochar samples were prepared from spent coffee grounds (500 °C, 1 h) that were chemically activated with TiO nanoparticles (150 °C, 24 h) to improve their conductivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!