Post-translational modifications of histones are important regulators of the DNA damage response (DDR). By using affinity purification mass spectrometry (AP-MS) we discovered that genetic suppressor element 1 (GSE1) forms a complex with the HDAC1/CoREST deacetylase/demethylase co-repressor complex. In-depth phosphorylome analysis revealed that loss of GSE1 results in impaired DDR, ATR signalling and γH2AX formation upon DNA damage induction. Altered profiles of ATR target serine-glutamine motifs (SQ) on DDR-related hallmark proteins point to a defect in DNA damage sensing. In addition, GSE1 knock-out cells show hampered DNA damage-induced phosphorylation on SQ motifs of regulators of histone post-translational modifications, suggesting altered histone modification. While loss of GSE1 does not affect the histone deacetylation activity of CoREST, GSE1 appears to be essential for binding of the deubiquitinase USP22 to CoREST and for the deubiquitination of H2B K120 in response to DNA damage. The combination of deacetylase, demethylase, and deubiquitinase activity makes the USP22-GSE1-CoREST subcomplex a multi-enzymatic eraser that seems to play an important role during DDR. Since GSE1 has been previously associated with cancer progression and survival our findings are potentially of high medical relevance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681733PMC
http://dx.doi.org/10.1093/nar/gkad911DOI Listing

Publication Analysis

Top Keywords

dna damage
20
co-repressor complex
8
post-translational modifications
8
loss gse1
8
gse1
7
dna
6
damage
5
gse1 links
4
links hdac1/corest
4
hdac1/corest co-repressor
4

Similar Publications

Considering the multifactorial and complex nature of Alzheimer's disease and the requirement of an optimum multifunctional anti-Alzheimer's agent, a series of triazole tethered coumarin-eugenol hybrid molecules was designed as potential multifunctional anti-Alzheimer's agents using donepezil and a template. The designed hybrid molecules were synthesized a click chemistry approach and preliminarily screened for cholinesterase and Aβ aggregation inhibition. Among them, AS15 emerged as a selective inhibitor of AChE (IC = 0.

View Article and Find Full Text PDF

Gastric cancer is the fifth most common cancer and the fifth leading cause of cancer deaths worldwide. Chronic infection by the bacterium Helicobacter pylori is the most prominent gastric cancer risk factor, but only 1-3% of infected individuals will develop gastric cancer. Cigarette smoking is another independent gastric cancer risk factor, and H.

View Article and Find Full Text PDF

SRPKs Homolog Dsk1 Regulates Homologous Recombination Repair in Schizosaccharomyces pombe.

Genes Cells

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.

Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.

View Article and Find Full Text PDF

We investigate alternative strategies against reference bias and postmortem damage in low coverage paleogenomes. Compared to alignment to the linear reference genome, we show that masking known polymorphic sites and graph alignment effectively remove reference bias, but only starting from raw read files. We next study approaches to overcome postmortem damage: trimming, rescaling, and our newly developed algorithm, bamRefine (github.

View Article and Find Full Text PDF

RNF138 contributes to cisplatin resistance in nasopharyngeal carcinoma cells.

Sci Rep

January 2025

Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), No. 999 Donghai Avenue, Taizhou City, 318000, Zhejiang Province, China.

Resistance to chemotherapy is a significant concern in the treatment of nasopharyngeal carcinoma (NPC), and occurs due to various mechanisms. This study is aimed to evaluate the effects of RING finger protein 138 (RNF138) in the development of cisplatin resistance to NPC. After gene overexpression and silencing, the expression levels of RNF138 were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!