AI Article Synopsis

  • Macular neovascularization is a serious complication of age-related macular degeneration, linked to abnormal blood vessel growth in the eye, and researchers seek to understand how various cell types are affected.
  • The study utilized spatial RNA sequencing on both affected and healthy human donor eyes to identify genes associated with macular neovascularization and discern which cell types exhibited altered gene expression.
  • Key findings revealed increased expression of certain signaling genes in endothelial cells and identified potential regulatory factors like VEGF and TGFB1, contributing to our understanding of the pathological changes in macular neovascularization.

Article Abstract

Purpose: Macular neovascularization is a relatively common and potentially visually devastating complication of age-related macular degeneration. In macular neovascularization, pathologic angiogenesis can originate from either the choroid or the retina, but we have limited understanding of how different cell types become dysregulated in this dynamic process.

Methods: To study how gene expression is altered in focal areas of pathology, we performed spatial RNA sequencing on a human donor eye with macular neovascularization as well as a healthy control donor. We performed differential expression to identify genes enriched within the area of macular neovascularization and used deconvolution algorithms to predict the originating cell type of these dysregulated genes.

Results: Within the area of neovascularization, endothelial cells demonstrated increased expression of genes related to Rho family GTPase signaling and integrin signaling. Likewise, VEGF and TGFB1 were identified as potential upstream regulators that could drive the observed gene expression changes produced by endothelial and retinal pigment epithelium cells in the macular neovascularization donor. These spatial gene expression profiles were compared to previous single-cell gene expression experiments in human age-related macular degeneration as well as a model of laser-induced neovascularization in mice. As a secondary aim, we investigated regional gene expression patterns within the macular neural retina and between the macular and peripheral choroid.

Conclusions: Overall, this study spatially analyzes gene expression across the retina, retinal pigment epithelium, and choroid in health and describes a set of candidate molecules that become dysregulated in macular neovascularization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615143PMC
http://dx.doi.org/10.1167/iovs.64.13.40DOI Listing

Publication Analysis

Top Keywords

gene expression
28
macular neovascularization
24
macular
10
neovascularization
8
age-related macular
8
macular degeneration
8
expression
8
retinal pigment
8
pigment epithelium
8
gene
7

Similar Publications

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Purpose: Inflammatory processes have been involved in diabetic retinopathy (DR). Interleukin (IL)-17A, a pro-inflammatory cytokine, is associated with DR occurrence and development. However, mechanisms underlying the IL-17A impact on DR need further investigations.

View Article and Find Full Text PDF

Blue Light Damages Retinal Ganglion Cells Via Endoplasmic Reticulum Stress and Autophagy in Chickens.

Invest Ophthalmol Vis Sci

January 2025

Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing, China.

Purpose: Because chickens have excellent light perception properties, this study focused on investigating whether monochromatic light can cause photodamage in chicken retinal ganglion cells (RGCs).

Methods: Post-hatching day chickens were exposed to four different light-emitting diode light environments for five weeks, respectively, monochromatic blue light (480 nm), green light (560 nm), red light (660 nm), or white light (6000 K). The mechanisms through which monochromatic light influences the structure of the chicken retina were analyzed by detecting the morphological structure of the retina, gene and protein expression levels, and the ultrastructure of the optic nerve.

View Article and Find Full Text PDF

Objective: Although sexual minority men experience substantial discrimination, in addition to increased risk for several serious mental and somatic health problems, the biological mechanisms underlying these effects are unclear. To address this issue, we examined how experiences of social safety (i.e.

View Article and Find Full Text PDF

Cell lineage analysis is primarily undertaken to understand cell fate specification and diversification along a cell lineage tree. Built with dual repressible markers, twin-spot mosaic analysis with repressible cell markers (MARCM) labels the two daughter cells made by a common precursor in distinct colors. The power of twin-spot MARCM to systematically subdivide complex lineages is exemplified in studies of Drosophila neural stem-cell lineages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!