Intramuscular lipids are stored as subsarcolemmal or intramyofibrillar droplets with potential diverse roles in energy metabolism. We examined intramuscular lipid utilization through transmission electron microscopy during repeated high-intensity intermittent exercise, an aspect that is hitherto unexplored. Seventeen moderately to well-trained males underwent three periods (EX1-EX3) of 10 × 45-s high-intensity cycling [∼100%-120% Watt (W)] combined with maximal repeated sprints (∼250%-300% W). M. vastus lateralis biopsies were obtained at baseline, after EX1, and EX3. During the complete exercise session, no net decline in either subsarcolemmal or intermyofibrillar lipid volume density occurred. However, a temporal relationship emerged for subsarcolemmal lipids with an ∼11% increase in droplet size after EX1 ( = 0.024), which reverted to baseline levels after EX3 accompanied by an ∼30% reduction in the numerical density of subsarcolemmal lipid droplets compared with both baseline ( = 0.019) and after EX1 ( = 0.018). Baseline distinctions were demonstrated with an approximately twofold higher intermyofibrillar lipid volume in type 1 versus type 2 fibers ( = 0.008), mediated solely by a higher number rather than the size of lipid droplets ( < 0.001). No fiber-type-specific differences were observed in subsarcolemmal lipid volume although type 2 fibers exhibited ∼17% larger droplets ( = 0.034) but a lower numerical density (main effect; = 0.010) including 3% less droplets at baseline. Collectively, these findings suggest that intramuscular lipids do not serve as an important substrate during high-intensity intermittent exercise; however, the repeated exercise pattern mediated a temporal remodeling of the subsarcolemmal lipid pool. Furthermore, fiber-type- and compartment-specific differences were found at baseline underscoring the heterogeneity in lipid droplet deposition. Undertaking a severe repeated high-intensity intermittent exercise protocol led to no net decline in neither subsarcolemmal nor intermyofibrillar lipid content in the thigh muscle of young moderately to well-trained participants. However, a temporal remodeling of the subsarcolemmal pool of lipid droplets did occur indicative of potential transient lipid accumulation. Moreover, baseline fiber-type distinctions in subcellular lipid droplet deposition were present underscoring the diversity in lipid droplet storage among fiber types and subcellular regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00298.2023 | DOI Listing |
Food Res Int
January 2025
VTT Technical Research Centre of Finland, Tekniikantie 21, 02044 VTT Espoo, Finland. Electronic address:
Oleaginous yeasts offer a promising sustainable alternative for producing edible lipids, potentially replacing animal and unsustainable plant fats and oils. In this study, we screened 11 oleaginous yeast species for their lipid profiles and identified Apiotrichum brassicae as the most promising candidate due to its versatility across different growth media. A.
View Article and Find Full Text PDFArch Physiol Biochem
January 2025
Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
Background: Lipid metabolism, one of the three major metabolic processes, plays a crucial role in male fertility, particularly when lipid homeostasis is disrupted. Lipid droplets (LDs), cellular organelles that store lipids primarily in the form of triglycerides and cholesterol esters, serve as central hubs in lipid metabolism.The degradation of LDs is regulated by lipases and lipophagy.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung City, 402, Taiwan.
Background: Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China. Electronic address:
Biomimetic membrane was investigated as model systems to mimic the structure of milk fat globule membrane (MFGM) and to study the effects of thermal processing-induced changes in MFGM fractions on membrane morphology and physical properties. Molecular docking was utilized to screen xanthine oxidase (XO) as the MFGM protein most likely to bind to phospholipid molecules on MFGM. Fluorescence spectroscopy verified that XO formed stable complexes with DOPE, DPPC, and PS 18:0-18:1, with the strongest binding to DOPE.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic. Electronic address:
Endocrine-disrupting compounds (EDCs) may contribute to the rising incidence of metabolic dysfunction-associated steatotic liver disease (MASLD). We investigated the potential of 10 environmentally relevant EDCs to affect key events of hepatic steatosis in HepG2 human hepatoma cells. Increased lipid droplet formation, a key marker of steatosis, was induced by PFOA, bisphenol F, DDE, butylparaben, and DEHP, within the non-cytotoxic concentration range of 1 nM-25 μM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!