Automatic Rhodopsin Modeling with Multiple Protonation Microstates.

J Phys Chem A

Aix-Marseille Univ, CNRS, ICR, 13013 Marseille, France.

Published: November 2023

Automatic Rhodopsin Modeling (ARM) is a simulation protocol providing QM/MM models of rhodopsins capable of reproducing experimental electronic absorption and emission trends. Currently, ARM is restricted to a single protonation microstate for each rhodopsin model. Herein, we incorporate an extension of the minimal electrostatic model (MEM) into the ARM protocol to account for all relevant protonation microstates at a given pH. The new ARM+MEM protocol determines the most important microstates contributing to the description of the absorption spectrum. As a test case, we have applied this methodology to simulate the pH-dependent absorption spectrum of a toy model, showing that the single-microstate picture breaks down at certain pH values. Subsequently, we applied ARM+MEM tosensory rhodopsin, confirming an improved description of its absorption spectrum when the titration of several key residues is considered.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.3c05413DOI Listing

Publication Analysis

Top Keywords

absorption spectrum
12
automatic rhodopsin
8
rhodopsin modeling
8
protonation microstates
8
description absorption
8
modeling multiple
4
multiple protonation
4
microstates automatic
4
modeling arm
4
arm simulation
4

Similar Publications

When dielectrics are hit with intense infrared (IR) laser pulses, transient metalization can occur. The initial attosecond dynamics behind this metallization are not entirely understood. Therefore, simulations are needed to understand this process and to help interpret experimental observations of it, such as with attosecond transient absorption (ATA).

View Article and Find Full Text PDF

Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.

View Article and Find Full Text PDF

Ultimate water capillary evaporation in bamboo-inspired evaporator.

Mater Horiz

January 2025

Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.

Bionic evaporators inspired by natural plants like bamboo and mushrooms have emerged as efficient generators through water capillary evaporation. However, primitive natural evaporators cannot currently meet growing demand, and their performance limitations remain largely unexplored, presenting a substantial challenge. Through extensive experimentation and detailed simulation analysis, this study presents a precisely engineered H-type bamboo steam generator.

View Article and Find Full Text PDF

Photocatalytic technology for removing organic dye pollutants has gained considerable attention because of its ability to harness abundant solar energy without requiring additional chemical reagents. In this context, YF spheres doped with Yb, Er, Tm (YF) are synthesized using a hydrothermal method and are subsequently coated with a layer of graphitic carbon nitride (g-CN) with Au nanoparticles (NPs) adsorbed onto the surface to create a core-shell structure, designated as YF: Yb, Er, Tm@CN-Au (abbreviated as YF@CN-Au). The core-shell composites demonstrate remarkable stability, broadband absorption, and exceptional photocatalytic activity across the ultraviolet (UV) to near-infrared (NIR) spectral range.

View Article and Find Full Text PDF

In the manipulation of π-conjugated organic polymer, strategic alterations to the polymerization cascade facilitate the integration of donor (D) and acceptor (A) entities within the polymer's backbone. Such control is instrumental in broadening the photoresponse spectrum, enhancing photoinduced charge separation, and augmenting the efficiency of charge transfer processes. The oxygen-containing amino group (-ONH) was innovatively grafted into the polymerization process of the triazine-heptazine ring skeleton, and the -ONH was used as a capping agent to change the chain bonding in the polymerization process, thus a new intramolecular D-A structure was successfully constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!