Background: The chromodomain helicase DNA-binding protein 2 (CHD2) is a member of the ATP-dependent chromatin remodelling family of proteins, which are critical for the assembly and regulation of chromatin. De novo variants and deletions in the CHD2 gene have been associated with childhood-onset developmental and epileptic encephalopathies type 94 (DEE 94). This study reports a novel deleterious de novo heterozygous frameshift insertion variant in the CHD2 gene.

Methods: The causative variant was diagnosed using whole-exome sequencing. Sanger sequencing and cosegregation analysis were applied to confirm the candidate variant. Multiple in silico analysis tools were employed to interpret the variant using the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines.

Results: A de novo deleterious variant, NM_001271.4:c.1570dup (NP_001262.3:p.Ser524PhefsTer30), in the CHD2 gene, was identified in a 16-year-old boy with an intellectual and developmental disability, seizures and speech problems. The de novo occurrence of the variant was confirmed by segregation analysis in the family.

Conclusion: The findings of this study expand the existing knowledge of variants of the CHD2 gene and provide a detailed phenotype associated with this gene. These data could have implications for genetic diagnosis and counselling in similar conditions. Moreover, this information could be useful for therapeutic purposes, including the proper administration of medication to control epilepsy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767600PMC
http://dx.doi.org/10.1002/mgg3.2305DOI Listing

Publication Analysis

Top Keywords

chd2 gene
16
variant chd2
8
intellectual developmental
8
developmental disability
8
disability seizures
8
seizures speech
8
speech problems
8
variant
7
chd2
6
gene
5

Similar Publications

Article Synopsis
  • Adenoid cystic carcinomas (AdCC) of salivary gland origin are primarily defined by the presence of specific gene fusions, notably MYB::NFIB and MYBL1::NFIB, with sinonasal AdCC being particularly aggressive and lacking effective treatments.
  • Researchers conducted an extensive analysis of 88 sinonasal AdCC cases using various techniques like NGS and FISH to identify gene fusions and mutations, finding that the majority harbored canonical fusions while some had noncanonical ones, with a few tumors showing no fusions at all.
  • Mutational analysis revealed that about 68% of AdCCs tested (21 out of 31) had mutations in key oncogenes, highlighting potential areas for targeted
View Article and Find Full Text PDF

Impact of excess sugar on the whole genome DNA methylation pattern in human sperm.

Epigenomics

December 2024

Epigenetics and Diabetes Unit, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.

Aims, Patients & Methods: Dietary factors may regulate the epigenome. We aimed to explore whether a diet intervention, including excess sugar, affects the methylome in human sperm, and to describe the sperm methylome. We used Whole Genome Bisulfite Sequencing (WGBS) to analyze DNA methylation in sperm taken at three time points from 15 males during a diet intervention; i) at baseline, ii) after one week on a standardized diet, and iii) after an additional week on a high-sugar diet providing 150% of their estimated total energy expenditure.

View Article and Find Full Text PDF

The nucleosome remodeler Chd1 is required for the re-establishment of nucleosome positioning in the wake of transcription elongation by RNA Polymerase II. Previously, we found that Chd1 occupancy on gene bodies depends on the Rtf1 subunit of the Paf1 complex in yeast. Here, we identify an N-terminal region of Rtf1 and the CHCT domain of Chd1 as sufficient for their interaction and demonstrate that this interaction is direct.

View Article and Find Full Text PDF

Key Synaptic Pathology in Autism Spectrum Disorder: Genetic Mechanisms and Recent Advances.

J Integr Neurosci

September 2024

Department of Pathology, The Affiliated Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China.

Article Synopsis
  • Autism spectrum disorder (ASD) is a neurodevelopmental disorder marked by challenges in social interaction and communication, alongside repetitive behaviors.
  • The incidence of ASD has notably risen globally over the past three decades, and its genetic underpinnings involve over 1000 genes, highlighting its complex nature.
  • This review emphasizes the role of synaptic pathology in ASD, focusing on genetic variants that affect synaptic structure and function, suggesting that these genetic mutations may be key contributors to the disorder's development.
View Article and Find Full Text PDF

Neurodevelopmental Disorder Caused by Deletion of , a lncRNA Gene.

N Engl J Med

October 2024

From the Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (V.S.G., M.C.O., J.K.G., K.V.G., E.E., B.W., F.A., D.G.M., A.O.-L.), and the Department of Neurology, Brigham and Women's Hospital (V.S.G.), the Division of Genetics and Genomics, Boston Children's Hospital (V.S.G., A.O.-L.), and Harvard Medical School (V.S.G., A.O.-L.), Boston - all in Massachusetts; L'institut du Thorax (K.R., B.I., S.B., B.C.), Service de Radiopediatrie (A.P.), and Service de Génétique Médicale (B.I., S.B., B.C.), Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, Centre National de la Recherche Scientifique (CNRS), INSERM, Nantes, and Institut Neuromyogène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS, INSERM (N.C., D.S.), and Service de Génétique, Hospices Civils de Lyon (N.C., P.M., D.S.), Lyon - all in France; the Departments of Neurology (E.Y., K.-M.L., M.C.A., G.L.C.) and Pharmacology (G.L.C.), Northwestern University Feinberg School of Medicine, Chicago; the Undiagnosed Diseases Network and the Department of Molecular and Human Genetics, Baylor College of Medicine, Houston (C.A.B., D.R.M., H.D., J.A.R., L.T.E., S. Ketkar), and the Department of Pediatrics, University of Texas Southwestern Medical Center (S. Kayani), and Coalition to Cure CHD2 (B.B.), Dallas; the Departments of Immunology and Regenerative Biology and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel (Y.S., I.U.); and the Centre for Population Genomics, Garvan Institute of Medical Research and University of New South Wales Sydney, Sydney (D.G.M.), and the Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC (D.G.M.) - both in Australia.

encodes a human long noncoding RNA (lncRNA) adjacent to , a coding gene in which de novo loss-of-function variants cause developmental and epileptic encephalopathy. Here, we report our findings in three unrelated children with a syndromic, early-onset neurodevelopmental disorder, each of whom had a de novo deletion in the locus. The children had severe encephalopathy, shared facial dysmorphisms, cortical atrophy, and cerebral hypomyelination - a phenotype that is distinct from the phenotypes of patients with haploinsufficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!