Unique factors in the space environment can cause dysbiosis of astronauts' gut microbiota and its metabolites, which may exert systematic physiological effects on human body. Recent progress regarding the effect of space flight/simulated space environment (SF/SPE) on the composition of gut microbiota and its metabolites was reviewed in this paper. SF/SPE may cause the increase of invasive pathogenic bacteria and the decrease of beneficial bacteria, aggravating intestinal inflammation and increasing intestinal permeability. SF/SPE may also cause the decrease of beneficial metabolites or the increase of harmful metabolites of gut microbiota, leading to metabolism disorder , or inducing damage of other systems, thus not beneficial to the health and working efficiency of astronauts. Summarizing the effects of SF/SPE on gut microbiota may provide scientific basis for further researches in this field and the on-orbit health protection of astronauts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.230067 | DOI Listing |
Vet Q
December 2025
Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.
This study aimed to investigate the effects of dietary isatidis root polysaccharide (IRP) on diarrhea, immunity, and intestinal health in weanling piglets. Forty healthy piglets were randomly assigned to five groups receiving varying dosages of IRP. The findings indicated that different concentrations of IRP significantly reduced diarrhea scores ( < 0.
View Article and Find Full Text PDFFood Funct
January 2025
Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.
View Article and Find Full Text PDFAging Dis
January 2025
Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
Aging is a complex and universal process marked by gradual functional declines at the cellular and tissue levels, often leading to a range of aging-related diseases such as diabetes, cardiovascular diseases, and cancer. Delaying the aging process can help prevent, slow down, and alleviate the severity of these various conditions, enhancing overall health and well-being. Alpha-glucosidase inhibitors (AGIs) are a class of widely used antidiabetic drugs that inhibit alpha-glucosidase in the small intestinal mucosa, delaying carbohydrate absorption and reducing postprandial hyperglycemia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
VIB-UGent Center for Inflammation Research, Ghent, Belgium.
Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!