An accurate rule for predicting conductance is the cornerstone of developing molecular circuits and provides a promising solution for miniaturizing electric circuits. The successful prediction of series molecular circuits has proven the possibility of establishing a rule for molecular circuits under quantum mechanics. However, the quantitatively accurate prediction has not been validated by experiments for parallel molecular circuits. Here we used 1,3-dihydrobenzothiophene (DBT) to build the parallel molecular circuits. The theoretical simulation and single-molecule conductance measurements demonstrated that the conductance of the molecule containing one DBT is the unprecedented linear combination of the conductance of the two individual channels with respective contribution weights of 0.37 and 0.63. With these weights, the conductance of the molecule containing two DBTs is predicted as 1.81 nS, matching perfectly with the measured conductance (1.82 nS). This feature offers a potential rule for quantitatively predicting the conductance of parallel molecular circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c02763 | DOI Listing |
Acc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFTrends Neurosci
January 2025
Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
Despite accounting for only ~0.001% of all neurons in the human brain, midbrain dopaminergic neurons control numerous behaviors and are associated with many neuropsychiatric disorders that affect our physical and mental health. Dopaminergic neurons form various anatomically and functionally segregated pathways.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
Psychedelics, historically celebrated for their cultural and spiritual significance, have emerged as potential breakthrough therapeutic agents due to their profound effects on consciousness, emotional processing, mood, and neural plasticity. This review explores the mechanisms underlying psychedelics' effects, focusing on their ability to modulate brain connectivity and neural circuit activity, including the default mode network (DMN), cortico-striatal thalamo-cortical (CSTC) loops, and the relaxed beliefs under psychedelics (REBUS) model. Advanced neuroimaging techniques reveal psychedelics' capacity to enhance functional connectivity between sensory cerebral areas while reducing the connections between associative brain areas, decreasing the rigidity and rendering the brain more plastic and susceptible to external changings, offering insights into their therapeutic outcome.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.
Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Experimental Oncology Laboratory, National Institute of Pediatrics, Mexico City 04530, Mexico.
Acute lymphoblastic leukemia (ALL) is a malignant neoplasm with the highest incidence in the pediatric population. Although the 5-year overall survival is greater than 85%, in emerging countries such as Mexico, the mortality rate is high. In Mexico, B-ALL is the most common type of childhood cancer; different characteristics suggest the presence of the disease; however, the prognosis is dependent on clinical and laboratory features, and no adverse prognostic molecular marker for B-ALL has yet been identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!