Introduction: Single sided deafness (SSD) results in profound cortical reorganization that presents clinically with a significant impact on sound localization and speech comprehension. Cochlear implantation (CI) has been approved for two manufacturers' devices in the United States to restore bilateral function in SSD patients with up to 10 years of auditory deprivation. However, there is great variability in auditory performance and it remains unclear how auditory deprivation affects CI benefits within this 10-year window. This prospective study explores how measured auditory performance relates to real-world experience and device use in a cohort of SSD-CI subjects who have between 0 and 10 years of auditory deprivation.
Methods: Subjects were assessed before implantation and 3-, 6-, and 12-months post-CI activation via Consonant-Nucleus-Consonant (CNC) word recognition and Arizona Biomedical Institute (AzBio) sentence recognition in varying spatial speech and noise presentations that simulate head shadow, squelch, and summation effects (SN, SN, SN; 0 = front, SSD = impacted ear, NH = normal hearing ear). Patient-centered assessments were performed using Tinnitus Handicap Inventory (THI), Spatial Hearing Questionnaire (SHQ), and Health Utility Index Mark 3 (HUI3). Device use data was acquired from manufacturer software. Further subgroup analysis was performed on data stratified by <5 years and 5-10 years duration of deafness.
Results: In the SSD ear, median (IQR) CNC word scores pre-implant and at 3-, 6-, and 12-months post-implant were 0% (0-0%), 24% (8-44%), 28% (4-44%), and 18% (7-33%), respectively. At 6 months post-activation, AzBio scores in SN and SN configurations ( = 25) demonstrated statistically significant increases in performance by 5% ( = 0.03) and 20% ( = 0.005), respectively. The median HUI3 score was 0.56 pre-implant, lower than scores for common conditions such as anxiety (0.68) and diabetes (0.77), and comparable to stroke (0.58). Scores improved to 0.83 (0.71-0.91) by 3 months post-activation. These audiologic and subjective benefits were observed even in patients with longer durations of deafness.
Discussion: By merging CI-associated changes in objective and patient-centered measures of auditory function, our findings implicate central mechanisms of auditory compensation and adaptation critical in auditory performance after SSD-CI and quantify the extent to which they affect the real-world experience reported by individuals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591100 | PMC |
http://dx.doi.org/10.3389/fnins.2023.1247269 | DOI Listing |
Am J Audiol
January 2025
Department of Otolaryngology, University of Utah, Salt Lake City.
Purpose: Unilateral cochlear implant (CI) recipients with limited hearing in the contralateral ear are deprived of the advantages of binaural hearing. To address speech recognition challenges arising from the head shadow effect, a contralateral routing of signal (CROS) device can be used; however, less is known of the broader impact of a CROS device on an individual's quality of life (QoL) or that of their frequent communication partners (FCPs). This preliminary study aimed to evaluate the impact of CROS on speech recognition in noise and its influence on the QoL of unilateral CI recipients and their FCPs.
View Article and Find Full Text PDFiScience
November 2024
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Plastic changes in the brain are primarily limited to early postnatal periods. Recovery of adult brain plasticity is critical for the effective development of therapies. A brief (1-2 weeks) duration of visual deprivation (dark exposure, DE) in adult mice can trigger functional plasticity of thalamocortical and intracortical circuits in the primary auditory cortex suggesting improved sound processing.
View Article and Find Full Text PDFSci Rep
January 2025
Department of ENT/Audiology & School for Mental Health and NeuroScience (MHENS), Maastricht University Medical Centre, Maastricht, The Netherlands.
Traditionally, the place-pitch 'tonotopically' organized auditory neural pathway was considered to be hard-wired. Cochlear implants restore hearing by arbitrarily mapping frequency-amplitude information. This study shows that recipients, after a long period of sound deprivation, preserve a level of auditory plasticity, enabling them to swiftly and concurrently learn speech understanding with two alternating, distinct frequency maps.
View Article and Find Full Text PDFSci Rep
December 2024
School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
Hearing loss (HL) in mid-life has been suggested as a risk factor for cognitive decline. It is unclear whether this relationship is due to deprivation of auditory input alone, degenerative processes, or a combination. Animal models are useful to investigate underlying neural mechanisms as human studies can be confounded by various factors.
View Article and Find Full Text PDFMol Brain
November 2024
Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!