Neurotrophic tyrosine receptor kinase (NTRK) gene-fusion targeted molecules revolutionized the paradigm of treatment of a limited subgroup of cancers of various histologies. Entrectinib and larotrectinib obtained unprecedented response rates in patients with cancer harboring NTRK rearrangements. This evidence recently led to the agnostic approval of these drugs, and evidence (confirmation) of their activity in a broader disease setting is emerging. Here, we report the case of a patient affected by EML4-NTRK3 rearranged undifferentiated spindle cell bone sarcoma treated with larotrectinib, and we argue (discuss about) the incidence and clinical presentation of NTRK gene-fusion positive bone sarcomas, the potential use of upfront treatment with NTRK inhibitors in neoadjuvant setting, and the role of a multidisciplinary tumor board. Despite the rarity of these rearrangements in patients with primitive bone sarcomas, the therapy with NTRK inhibitors represents a highly effective strategy to be pursued in selected cases even in neoadjuvant settings. The management of these very rare cancers should always be discussed in a multidisciplinary board of reference centers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10591071 | PMC |
http://dx.doi.org/10.3389/fonc.2023.1252359 | DOI Listing |
Anaesthesia
January 2025
The Christie NHS Foundation Trust, Manchester, UK.
Introduction: Cancer research has revolutionised the treatment, quality of life and life expectancy of people living with cancer. Systemic anti-cancer treatments have expanded to involve not only cytotoxic drugs, but targeted drugs and immunotherapy. Although highly effective in many patients, these drugs can cause serious and sometimes life-threatening adverse reactions.
View Article and Find Full Text PDFHistopathology
January 2025
Division of Molecular Medicine, Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK.
Aims: Threonine and tyrosine kinase (TTK) is up-regulated in triple-negative breast cancer (TNBC), yet its expression in patients undergoing neoadjuvant chemotherapy (NACT) remains unexplored. This investigation aims to assess TTK protein expression in treatment-naïve pre-treatment cores and paired pre- and post-NACT breast cancer (BC) cohorts, as well as its correlation with microcephaly 1 (MCPH1) protein expression.
Methods And Results: Transcriptomic data were sourced from the Gene Expression Omnibus microarray database for mRNA expression analysis.
Radiology
January 2025
From the Department of Radiology, Montpellier Cancer Institute, University of Montpellier, 208 av des Apothicaires, 34090 Montpellier, France (S.N.); PINKCC Laboratory, Montpellier Cancer Research Institute, University of Montpellier, Montpellier, France (S.N.); Jones Radiology, South Australia, Australia (K.G.); The University of Adelaide, South Australia, Australia (K.G.); Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands (D.M.J.L.); GROW School for Oncology and Reproduction, University of Maastricht, Maastricht, the Netherlands (D.M.J.L.); Department of Radiology, McGill University, Montreal, Quebec, Canada (C.R.); Department of Radiology, Guy's and St Thomas NHS Foundation Trust, London, United Kingdom (V.G.); School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, United Kingdom (V.G.); Department of Radiology, Oregon Health & Science University, Portland, Ore (E.K.); Bordeaux Colorectal Institute, Bordeaux, France (Q.D.); Department of Radiology, Royal Marsden, London, United Kingdom (G.B.); Department of Radiology, Imperial College London, London, United Kingdom (G.B.).
Over the past decade, advancements in rectal cancer research have reshaped treatment paradigms. Historically, treatment for locally advanced rectal cancer has focused on neoadjuvant long-course chemoradiotherapy, followed by total mesorectal excision. Interest in organ preservation strategies has been strengthened by the introduction of total neoadjuvant therapy with improved rates of complete clinical response.
View Article and Find Full Text PDFExplor Target Antitumor Ther
November 2024
Division of Pulmonary, Critical Care, and Sleep Disorders Medicine, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
There has been a rapid expansion of immunotherapy options for non-small cell lung cancer (NSCLC) over the past two decades, particularly with the advent of immune checkpoint inhibitors. Despite the emerging role of immunotherapy in adjuvant and neoadjuvant settings though, relatively few patients will respond to immunotherapy which can be problematic due to expense and toxicity; thus, the development of biomarkers capable of predicting immunotherapeutic response is imperative. Due to the promise of a noninvasive, personalized approach capable of providing comprehensive, real-time monitoring of tumor heterogeneity and evolution, there has been wide interest in the concept of using circulating tumor DNA (ctDNA) to predict treatment response.
View Article and Find Full Text PDFFront Immunol
January 2025
Translational Radiobiology Lab, Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany.
Background: Esophageal cancer has a poor prognosis despite treatment advancements. Although the benefit of neoadjuvant chemoradiotherapy (CRT) followed by adjuvant immunotherapy is evident, the effects of CRT on PD-L1 expression in esophageal cancer are not well understood. This study examines the impact of neoadjuvant CRT on PD-L1 surface expression in esophageal cancer both and considering its implications for immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!